To survive environmental conditions, cells transcribe their response activities into encoded mRNA sequences in order to produce certain amounts of protein concentrations. The external conditions are mapped into the cell through the activation of special proteins called transcription factors (TFs). Due to the difficult task to measure experimentally TF behaviors, and the challenges to capture their quick-time dynamics, different types of models based on differential equations have been proposed. However, those approaches usually incur in costly procedures, and they present problems to describe sudden changes in TF regulators. In this paper, we present a switched dynamical latent force model for reverse-engineering transcriptional regulation in gene expression data which allows the exact inference over latent TF activities driving some observed gene expressions through a linear differential equation. To deal with discontinuities in the dynamics, we introduce an approach that switches between different TF activities and different dynamical systems. This creates a versatile representation of transcription networks that can capture discrete changes and non-linearities. We evaluate our model on both simulated data and real data (e.g., microaerobic shift in E. coli, yeast respiration), concluding that our framework allows for the fitting of the expression data while being able to infer continuous-time TF profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2017.2764908DOI Listing

Publication Analysis

Top Keywords

expression data
12
latent force
8
reverse-engineering transcriptional
8
transcriptional regulation
8
regulation gene
8
gene expression
8
data
5
switched latent
4
force models
4
models reverse-engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!