In metabolic network modification, we newly add enzymes or/and knock-out genes to maximize the biomass production with minimum side-effect. Although this problem has been studied for various problem settings via mathematical models including flux balance analysis, elementary mode, and Boolean models, some important problem settings still remain to be studied. In this paper, we consider the Boolean Reaction Modification (BRM) problem, where a host metabolic network and a reference metabolic network are given in the Boolean model. The host network initially produces some toxic compounds and cannot produce some necessary compounds, but the reference network can produce the necessary compounds, and we should minimize the total number of removed reactions from the host network and added reactions from the reference network so that the toxic compounds are not producible, but the necessary compounds are producible in the resulting host network. We developed integer linear programming (ILP)-based methods for BRM, and compared them with OptStrain and SimOptStrain. The results show that our method performed better for reducing the total number of added and removed reactions, while OptStrain and SimOptStrain performed better for optimizing the production of the target compound. Our developed software is freely available at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/solBRM/solBRM.html ".

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2017.2777456DOI Listing

Publication Analysis

Top Keywords

metabolic network
16
host network
12
network
9
problem settings
8
toxic compounds
8
produce compounds
8
reference network
8
total number
8
number removed
8
removed reactions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!