A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors. | LitMetric

In this paper, we develop new methods to automatically detect the onset and duration of freezing of gait (FOG) in people with Parkinson disease (PD) in real time, using inertial sensors. We first build a physical model that describes the trembling motion during the FOG events. Then, we design a generalized likelihood ratio test framework to develop a two-stage detector for determining the zero-velocity and trembling events during gait. Thereafter, to filter out falsely detected FOG events, we develop a point-process filter that combines the output of the detectors with information about the speed of the foot, provided by a foot-mounted inertial navigation system. We computed the probability of FOG by using the point-process filter to determine the onset and duration of the FOG event. Finally, we validate the performance of the proposed system design using real data obtained from people with PD who performed a set of gait tasks. We compare our FOG detection results with an existing method that only uses accelerometer data. The results indicate that our method yields 81.03% accuracy in detecting FOG events and a threefold decrease in the false-alarm rate relative to the existing method.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2017.2785625DOI Listing

Publication Analysis

Top Keywords

fog events
12
freezing gait
8
parkinson disease
8
inertial sensors
8
onset duration
8
point-process filter
8
existing method
8
fog
7
modeling detecting
4
detecting tracking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!