Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Respiratory rate (RR) estimation algorithms based on the photoplethymogram (PPG) and electrocardiogram (ECG) lack clinical robustness. This is because the PPG and ECG respiratory modulations are dependent on patient physiology, regardless of general signal quality. The present work describes an RR estimation algorithm using respiratory quality indices (RQIs) that assess the presence or absence of the PPG- and ECG-derived respiratory modulations.
Methods: Six respiratory waveforms are derived from the amplitude modulation, frequency modulation, and baseline wander of the PPG and ECG. The respiratory quality of each modulation is assessed by using RQIs based on the fast Fourier transform, autoregression, and autocorrelation. The individual RQIs are fused to obtain a single RQI per modulation per time window. Based on a tunable threshold, the RQIs are used to discard poor modulations and weight the remaining modulations to provide a single RR estimation per time window.
Results: The proposed method was tested on two independent datasets and found that using a conservative threshold, the mean absolute error was 0.71 $\pm$ 0.89 and 3.12 $\pm$ 4.39 brpm while discarding only 1.3% and 23.2% of all time windows, for each dataset, respectively.
Conclusion: These errors are either better than or comparable to current methods, and the number of windows discarded is far lower demonstrating improved robustness.
Significance: This work describes a novel preprocessing algorithm that can be implemented in conjunction with other RR estimation techniques to improve robustness by specifically considering the quality of the respiratory information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2017.2778265 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!