Recent experiments have found hexadecyl-trimethyl-ammonium bromide (CTAB) to have superior ice nucleation inhibition properties [ J. Phys. Chem. B 121, 6580]. The mechanism of how the inhibition takes place remains unclear. Therefore, molecular dynamics was used to simulate ice crystallization of a water/CTAB/ice system. The ice crystallization rate for a pure water system was compared for the basal [0001], first prism [101̅0], and secondary prism plane [112̅0], where the basal plane grew the slowest followed by the first prism plane. When CTAB was added to the ice-liquid water system, crystallization was clearly impeded. Even when ice starts growing away from the CTAB molecule, the hydrophilic head would at some point protrude and get caught in the water/ice interface. Once the head of the CTAB was encapsulated in the advancing interface, the hydrophobic body would wriggle around and disrupt the formation of hydrogen bond networks that are essential for ice growth. When the interface clears the length of the body of the CTAB molecule, ice crystallization resumes at its normal pace. In summary, the inhibition of ice growth is a combination of the hydrophilic head acting as an anchor and the dynamic motion of the hydrophobic tail hindering stable hydrogen bonding for ice growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01903 | DOI Listing |
Int J Pharm
January 2025
Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland. Electronic address:
Numerous commercially available biopharmaceuticals are frozen or freeze-dried in vials. The temperature at which ice nucleates and its distribution across vials in a batch is critical to the design of freezing and freeze-drying processes. Here we study experimentally how the level of particulate impurities - a key parameter in pharmaceutical manufacturing - affects the ice nucleation behavior.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.
Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China. Electronic address:
Temperature fluctuations can negatively affect the quality of frozen shrimp. Research on novel cryoprotectants to replace traditional agents (phosphate, etc.) has become a hotspot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!