Asymmetric functionality and directional interactions, which are characteristic of noncentrosymmetric particles, such as Janus particles, present an opportunity to encode particles with properties, but also a great synthetic challenge. Here, we exploit the chemical anisotropy of proteins, and the versatile chemistry of DNA to synthesize a protein-based Janus nanoparticle comprised of two proteins encoded with sequence-specific nucleic acid domains, tethered together by an interprotein "DNA bond". We use these novel nanoparticles to realize a new class of three-dimensional superlattice, only possible when two sides of the particle are modified with orthogonal oligonucleotide sequences. The low symmetry, intrinsic to Janus particles, enables the realization of unprecedented multicomponent nanoparticle superlattices with unique, hexagonal layered architectures. In addition, the interprotein "DNA bond" can be modulated to selectively expand the lattice in a single direction. The results presented herein not only emphasize the power of rationally designing nanoscale building blocks to create highly engineered colloidal crystals, but also establish a precedent for applications of multidomain DNA-encoded nanoparticles, especially in the field of colloidal crystallization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b05640 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, 95817, CA, USA.
In this study, we developed a novel strategy for effective bacteria capture, elimination, and detection. The aptamer of Staphylococcus aureus (S. aureus) was immobilized on FeO NPs and partly hybridized with the T strand, which exhibited good bacterial capture efficiency.
View Article and Find Full Text PDFTalanta
December 2024
The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:
The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
Fruit preservation materials play an instrumental role in preventing fruit deterioration and extending shelf life. However, existing fresh-keeping materials often prove inadequate in simultaneously achieving antibacterial properties, maintaining freshness, antioxidant effects, good biocompatibility, and prolonged fruit shelf life. Therefore, we present the first preparation of a natural polysaccharide spray hydrogel (Q/O/Zn hydrogel), loaded with chlorogenic acid‑zinc nanoparticles (CA@ZnNPs), utilizing quaternary ammonium insect chitosan (QECS) and oxidized pullulan (OPUL) for the preservation of perishable fruits.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!