We describe a simple and straightforward method for detection and characterization of X-chromosome inactivation in females and/or individuals with more than one X chromosome. The X-chromosome inactivation pattern is visualized on a single-cell level using 5-ethynyl-2-deoxyuridine (EdU) instead of the previously widely applied 5-bromo-2'-deoxyuridine (BUdR). The fluorochrome-labeled nucleoside analog EdU is incorporated into late-replication chromosomal regions of living blood cells in vitro; thus, it can also be used to specifically highlight the inactive X chromosome within a cytogenetic preparation. The EdU-based test for assessing skewed X-chromosome inactivation can only be meaningfully applied if the X chromosome of the index patient can be cytogenetically distinguished under a microscope from the normal one. © 2018 by John Wiley & Sons, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphg.66 | DOI Listing |
Immunol Cell Biol
January 2025
The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
In this Research Highlight, we discuss recent research which shows that TCR-mediated activation and NF-κB signalling play an indispensable role in localising Xist RNA and its interactors to the inactive X chromosome (Xi) in T cells (left and middle). Inhibition of NF-κB disrupts this process, impairing the recruitment of silencing factors and jeopardizing the maintenance of X chromosome inactivation (right).
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Fabry disease is an X-linked lysosomal storage disorder that causes accumulation of glycosphingolipids in body tissues and fluids, leading to progressive organ damage and life-threatening complications. It can affect both males and females and can be classified into classic or later-onset phenotypes. The disease severity in females ranges from asymptomatic to the more severe, classic phenotype.
View Article and Find Full Text PDFIn mammals, X-linked dosage compensation involves two processes: X-chromosome inactivation (XCI) to balance X chromosome dosage between males and females, and hyperactivation of the remaining X chromosome (Xa-hyperactivation) to achieve X-autosome balance in both sexes. Studies of both processes have largely focused on coding genes and have not accounted for transposable elements (TEs) which comprise 50% of the X-chromosome, despite TEs being suspected to have numerous epigenetic functions. This oversight is due in part to the technical challenge of capturing repeat RNAs, bioinformatically aligning them, and determining allelic origin.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!