Elucidating how cannabinoids affect brain function is instrumental for the development of therapeutic tools aiming to mitigate 'on target' side effects of cannabinoid-based therapies. A single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition memory in mice. Here, we evaluate how prolonged, intermittent (30 days) exposure to WIN 55,212-2 (1 mg/kg) alters recognition memory and impacts on brain metabolism and functional connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-like behaviour (Open Field and Elevated Plus Maze). Through C-2-deoxyglucose functional brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration alters functional connectivity in brain networks that underlie recognition memory, including that between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and between the hippocampus and the perirhinal cortex. In addition, our results support disturbed lateral habenula and serotonin system functional connectivity following WIN 55,212-2 exposure. Overall, this study provides new insight into the functional mechanisms underlying the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a particularly vulnerable target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220860 | PMC |
http://dx.doi.org/10.1111/jnc.14549 | DOI Listing |
Exp Brain Res
September 2024
Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep.
View Article and Find Full Text PDFProtein Pept Lett
September 2024
College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China.
Background: Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases.
Objective: To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA.
Mol Neurobiol
September 2024
Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
Mol Neurobiol
September 2024
Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity.
View Article and Find Full Text PDFMol Pharmacol
February 2023
Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
The endocannabinoid system (ECS) modulates synaptic function to regulate many aspects of neurophysiology. It adapts to environmental changes and is affected by disease. Thus, the ECS presents an important target for therapeutic development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!