Regenerative medicine was initially focused on tissue engineering to replace damaged tissues and organs with constructs derived from cells and biomaterials. More recently, this field of inquiry has expanded into exciting areas of translational medicine modulating the body's own endogenous processes, to prevent tissue damage in organs and to repair and regenerate these damaged tissues. This review will focus on recent insights derived from studies in which the manipulation of the innate immunologic system may diminish acute kidney injury and enhance renal repair and recovery without the progression to chronic kidney disease and renal failure. The manner in which these interventions may improve acute and chronic organ dysfunction, including the heart, brain, and lung, will also be reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035130PMC
http://dx.doi.org/10.1016/j.ekir.2017.12.012DOI Listing

Publication Analysis

Top Keywords

regenerative medicine
8
heart brain
8
brain lung
8
damaged tissues
8
medicine immunomodulatory
4
immunomodulatory therapy
4
therapy insights
4
insights from the
4
from the kidney
4
kidney heart
4

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample.

View Article and Find Full Text PDF

Myo-inositol improves developmental competence and reduces oxidative stress in porcine parthenogenetic embryos.

Front Vet Sci

December 2024

Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.

Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.

View Article and Find Full Text PDF

Shock is defined as a critical circulatory failure that requires prompt diagnosis to optimize patient outcomes. Traditional diagnostic methods have limitations, including contact-based measurements, high costs, and lengthy procedures. The study evaluated the efficacy of laser speckle contrast imaging (LSCI), a noncontact technique, for assessing peripheral hemodynamics in shock patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!