Spaceflight induces bone alterations with site-specific rates of bone loss according to the weight-bearing function of the bone. For the first time, this study aimed to characterize bone microarchitecture and density alterations of three ankle bones (calcaneus, navicular, and talus) of mice after spaceflight and to evaluate the impact of 8 days of Earth reambulation. Ten C57BL/6N male 4-month-old mice flew on the Bion-M1 biosatellite for 1 month; half were euthanized within 24-h of return and half after 8-days recovery on Earth. Bone microarchitecture and quality was assessed by microtomography (μCT). Whole calcaneus bone volume fraction decreased in Flight group (-6.4%, < 0.05), and worsened in the Recovery group (-11.08%, < 0.01), when compared to Control group. Navicular and talus trabecular bone volume fraction showed trends toward decrease in Flight and differences reached statistical significance in Recovery group (-8.16%; -8.87%, respectively; < 0.05) when compared to Control group. At calcaneus, cortical thickness decreased in Recovery vs. Control groups (-11.69%; < 0.01). Bone surface area, reflecting periosteal bone erosion, significantly increased in all bone sites analyzed. Qualitative analyses of 3-D bone reconstruction revealed local sites of cortical thinning and bone erosion, predominantly at articulations, muscle insertions, and ground contact bone sites. Overall, spaceflight-induced bone loss in ankle bones was site and compartment specific whilst the tissue mineral density of the remaining bone was preserved. Eight days after landing, bone status worsened as compared to immediate return.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6026650 | PMC |
http://dx.doi.org/10.3389/fphys.2018.00746 | DOI Listing |
ACS Nano
January 2025
Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.
View Article and Find Full Text PDFS Afr J Surg
December 2024
Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, China.
Tailgut cyst is an exceedingly rare congenital anomaly originating from embryonic remnants of the tailgut. Owing to its asymptomatic nature in the early stages, it is prone to clinical misdiagnosis. We present a case of a 55-year-old female with initial symptoms manifesting as sacrococcygeal pain.
View Article and Find Full Text PDFInfect Disord Drug Targets
January 2025
HCA Healthcare Las Palmas/Del Sol Internal Medicine Program.
Background: Streptococcal Toxic Shock Syndrome (STSS) is a life-threatening condition caused by bacterial toxins. The STSS triad encompasses high fever, hypotensive shock, and a "sunburn-like" rash with desquamation. STSS, like Toxic Shock Syndrome (TSS), is a rare complication of streptococcal infec-tions caused by Group A Streptococcus (GAS), Streptococcal pyogenes (S.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
January 2025
Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Since there is currently no cure for amyotrophic lateral sclerosis (ALS), it is essential to search for diagnostic biomarkers and novel treatments to reduce the severity of this disease. One of these treatment approaches is stem cell transplantation.
Objective: This study aims to evaluate the safety and efficacy of repeated transplantation of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with ALS by analyzing clinical and molecular data.
Comput Methods Biomech Biomed Engin
January 2025
Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, India.
As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!