This study develops an approach to automating the process of vegetation cover estimates using computer vision and pattern recognition algorithms. Visual cover estimation is a key tool for many ecological studies, yet quadrat-based analyses are known to suffer from issues of consistency between people as well as across sites (spatially) and time (temporally). Previous efforts to estimate cover from photograps require considerable manual work. We demonstrate that an automated system can be used to estimate vegetation cover and the type of vegetation cover present using top-down photographs of 1 m by 1 m quadrats. Vegetation cover is estimated by modelling the distribution of color using a multivariate Gaussian. The type of vegetation cover is then classified, using illumination robust local binary pattern features, into two broad groups: () and . This system is evaluated on two datasets from the globally distributed experiment, the Nutrient Network (NutNet). These NutNet sites were selected for analyses because repeat photographs were taken over time and these sites are representative of very different grassland ecosystems-a low stature subalpine grassland in an alpine region of Australia and a higher stature and more productive lowland grassland in the Pacific Northwest of the USA. We find that estimates of treatment effects on and cover did not differ between field and automated estimates for eight of nine experimental treatments. Conclusions about total vegetation cover did not correspond quite as strongly, particularly at the more productive site. A limitation with this automated system is that the total vegetation cover is given as a percentage of pixels considered to contain vegetation, but ecologists can distinguish species with overlapping coverage and thus can estimate total coverage to exceed 100%. Automated approaches such as this offer techniques for estimating vegetation cover that are repeatable, cheaper to use, and likely more reliable for quantifying changes in vegetation over the long-term. These approaches would also enable ecologists to increase the spatial and temporal depth of their coverage estimates with methods that allow for vegetation sampling over large spatial scales quickly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024135 | PMC |
http://dx.doi.org/10.1002/ece3.4135 | DOI Listing |
Front Plant Sci
January 2025
Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou, China.
Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
The generation of spectral libraries using hyperspectral data allows for the capture of detailed spectral signatures, uncovering subtle variations in plant physiology, biochemistry, and growth stages, marking a significant advancement over traditional land cover classification methods. These spectral libraries enable improved forest classification accuracy and more precise differentiation of plant species and plant functional types (PFTs), thereby establishing hyperspectral sensing as a critical tool for PFT classification. This study aims to advance the classification and monitoring of PFTs in Shoolpaneshwar wildlife sanctuary, Gujarat, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and machine learning techniques.
View Article and Find Full Text PDFSci Data
January 2025
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100091, China.
The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Wildlife Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS, 39762-9690, USA.
This study addresses the significant issue of rapid land use and land cover (LULC) changes in Lahore District, which is critical for supporting ecological management and sustainable land-use planning. Understanding these changes is crucial for mitigating adverse environmental impacts and promoting sustainable development. The main goal is to evaluate historical LULC changes from 1994 to 2024 and forecast future trends for 2034 and 2044 utilizing the CA-Markov hybrid model combined with GIS methodologies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geography, School of Environment, Education and Development, The University of Manchester, Arthur Lewis Building, Oxford Road, Manchester, M13 9PL, UK.
Urban woodland composition and configuration have strong associations with land surface temperatures (LST), but the evidence is contradictory due to different spatial scales, regional climate zones, woodland types and urban contexts. In this study, we analyse associations between urban woodland and LST within and between five cities in different Köppen climate zones. Our consistent methodology is framed around local climate zones and conducted at a fine spatial scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!