Acoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species. The standard occupancy model requires aggregating verified recordings to construct confirmed detection/non-detection datasets. The multistep data processing workflow is not necessarily transparent nor consistent among studies. We share a workflow diagramming strategy that could provide coherency among practitioners. A false-positive occupancy model is explored that accounts for misclassification errors and enables potential reduction in the number of confirmed detections. Simulations informed by real data were used to evaluate how much confirmation effort could be reduced without sacrificing site occupancy and detection error estimator bias and precision. We found even under a 50% reduction in total confirmation effort, estimator properties were reasonable for our assumed survey design, species-specific parameter values, and desired precision. For transferability, a fully documented r package, OCacoustic, for implementing a false-positive occupancy model is provided. Practitioners can apply OCacoustic to optimize their own study design (required sample sizes, number of visits, and confirmation scenarios) for properly implementing a false-positive occupancy model with bat or other wildlife acoustic data. Additionally, our work highlights the importance of clearly defining research objectives and data processing strategies at the outset to align the study design with desired statistical inferences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024138PMC
http://dx.doi.org/10.1002/ece3.4162DOI Listing

Publication Analysis

Top Keywords

occupancy model
16
false-positive occupancy
12
geographically extensive
8
modeling species
8
data processing
8
confirmation effort
8
implementing false-positive
8
study design
8
occupancy
6
species
5

Similar Publications

Establishing and managing nature reserves to mitigate wildlife habitat loss and fragmentation is challenging, particularly in the face of increasing human activity. To understand how wildlife coexists in environments affected by anthropogenic disturbances, we conducted a 19-month survey examining the Reeves's pheasant () and Koklass pheasant () in the Anhui Tianma National Nature Reserve, China. Previous studies of large terrestrial birds focused primarily on livestock impacts, with less attention given to other human activities.

View Article and Find Full Text PDF

Arctic habitats are changing rapidly and altering trophic webs and ecosystem functioning. Understanding how species' abundances and distributions differ among Arctic habitats is important in predicting future species shifts and trophic-web consequences. We aimed to determine the habitat-abundance relationships for three small herbivores on the Seward Peninsula of Alaska, USA by fitting data from 983 point counts (collected during 2019, 2021, and 2022) with N-mixture models that account for imperfect detection.

View Article and Find Full Text PDF

The purpose of this study is to investigate how deep learning and other artificial intelligence (AI) technologies can be used to enhance the intelligent level of dance instruction. The study develops a dance action recognition and feedback model based on the Graph Attention Mechanism (GA) and Bidirectional Gated Recurrent Unit (3D-Resnet-BigRu). In this model, time series features are captured using BiGRU after 3D-ResNet is inserted to extract video features.

View Article and Find Full Text PDF

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

Thermodynamics of nucleosome breathing and positioning.

J Chem Phys

January 2025

Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!