Nitrogen based eutrophication of ecosystems is a global problem that gains momentum through a growing global population. The water quality of nitrate or ammonium contaminated rivers and streams cannot always be amended in centralized waste water treatment plants. Field denitrification plants were suggested as a solution for a decentralized reduction of nitrate to dinitrogen. Here, stable and cheap organic carbon sources serve as carbon and electron source for a microbial community. Still, our knowledge on the impact of these organic carbon sources on the development and diversity of these cultures is sparse. Moreover, the stability of these denitrification plants at different nitrate loading rates especially in the higher concentration regime were not tested so far. In this study, we compare the fate of carbon and nitrogen as well as the microbial community of wood pellet (WP) (pressed sawdust), wheat straw, and wood chips (WC) based laboratory denitrification reactors. Our study reveals that the diversity and composition of the community is strongly dependent on the carbon source. The diversity decreased in the order WC, wheat straw, and WPs. The three reactor types were characterized by different nitrate reduction kinetics and were affected differently by high nitrate loading rates. While the nitrate reduction kinetics were negatively influenced by higher nitrate doses in the wheat straw reactors, WPs as carbon source sustained the opposite trend and WC lead to an overall slower but concentration independent nitrate reduction rate. Counterintuitively, the concentration of soluble organic carbon was highest in the WP reactors but methane emission was not detectable. This is corroborated by the microbial diversity data in which methanogenic species were highly underrepresented compared to the other two reactor types. In contrary, the methane emissions in the wheat straw and WC reactors were comparable to each other.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023987 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.01313 | DOI Listing |
Microorganisms
January 2025
Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania.
Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
Increasing carbon (C) sequestration and stability in agricultural soils is a key strategy to mitigate climate change towards C neutrality. Crop diversification is an initiative to increase C sequestration in fields, but it is unclear how legume-based crop diversification impacts the functional components of soil organic carbon (SOC) in dryland, including the formation and transformation of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). We investigated the decomposition of straw residues, the fate of photosynthesized C, as well as the formation of MAOC and POC fractions using an in situC labeling technique in the soybean-wheat intercropping, soybean-maize intercropping and their respective monocropping systems, with and without cover crops.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.
This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.
View Article and Find Full Text PDFToxics
January 2025
Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Rice, wheat, and maize grains are staple foods, widely consumed for their mineral and nutritional values. However, they can accumulate toxic elements from contaminated soils, posing health risks. This study investigates the bioaccumulation patterns of 52 elements (including nutrients, heavy metals, and rare earth elements) in various parts (grain, husk, straw, and root) of cereals grown in a heavily polluted region.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!