AI Article Synopsis

Article Abstract

IL-1 family regulatory cytokine IL-37b can suppress innate immunity and inflammatory activity in inflammatory diseases. In this study, IL-37b showed remarkable suppression of inflammatory tumor necrosis factor-α, IL-1β, IL-6, CCL2, and CXCL8 production in the coculture of human primary eosinophils and human bronchial epithelial BEAS-2B cells with the stimulation of bacterial toll-like receptor-2 ligand peptidoglycan, while antagonizing the activation of intracellular nuclear factor-κB, PI3K-Akt, extracellular signal-regulated kinase 1/2, and suppressing the gene transcription of allergic inflammation-related , and as demonstrated by flow cytometry, RNA-sequencing, and bioinformatics. Results therefore elucidated the novel anti-inflammation-related molecular mechanisms mediated by IL-37b. Using the house dust mite (HDM)-induced humanized asthmatic NOD/SCID mice for preclinical study, intravenous administration of IL-37b restored the normal plasma levels of eosinophil activators CCL11 and IL-5, suppressed the elevated concentrations of Th2 and asthma-related cytokines IL-4, IL-6, and IL-13 and inflammatory IL-17, CCL5, and CCL11 in lung homogenate of asthmatic mice. Histopathological results of lung tissue illustrated that IL-37b could mitigate the enhanced mucus, eosinophil infiltration, thickened airway wall, and goblet cells. Together with similar findings using the ovalbumin- and HDM-induced allergic asthmatic mice further validated the therapeutic potential of IL-37b in allergic asthma. The above results illustrate the novel IL-37-mediated regulation of intracellular inflammation mechanism linking bacterial infection and the activation of human eosinophils and confirm the anti-inflammatory activity of IL-37b on human allergic asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023969PMC
http://dx.doi.org/10.3389/fimmu.2018.01445DOI Listing

Publication Analysis

Top Keywords

inflammatory activity
8
human eosinophils
8
asthmatic mice
8
allergic asthma
8
il-37b
7
human
5
anti-allergic inflammatory
4
activity interleukin-37
4
interleukin-37 mediated
4
mediated novel
4

Similar Publications

5-Fluorouracil (5-FU) is a chemotherapeutic that is used to treat solid tumors. However, 5-FU is associated with several side effects, including cardiotoxicity. Considering the importance of the intrinsic cardiac nervous system (ICNS) for the heart and that little is known about effects of 5-FU on this nervous system plexus, the purpose of the present study was to evaluate effects 5-FU at a low dose on the ICNS and oxidative and inflammatory effects in the heart in Wistar rats.

View Article and Find Full Text PDF

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Previous studies have shown that astrocyte activation in the anterior cingulate cortex (ACC), accompanied by upregulation of the astrocyte marker S100 calcium binding protein B (S100B), contributes to comorbid anxiety in chronic inflammatory pain (CIP), but the exact downstream mechanism is still being explored. The receptor for advanced glycation end-products (RAGE) plays an important role in chronic pain and psychosis by recognizing ligands, including S100B. Therefore, we speculate that RAGE may be involved in astrocyte regulation of the comorbidity between CIP and anxiety by recognizing S100B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!