Benzimidazoisoquinoline derivatives inhibit glioblastoma cell proliferation through down-regulating Raf/MEK/ERK and PI3K/AKT pathways.

Cancer Cell Int

Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China.

Published: June 2018

Background: Recent studies showed that benzimidazoleisoquinolinone derivatives exhibit anticancer activity against human cancer cell lines. The aim of this study is to evaluate the anti-tumor effects and mechanisms of benzimidazoleisoquinolinones in isocitrate dehydrogenase-wildtype subtype of human glioblastoma (GBM) cells.

Methods: Human U87 and LN229 cell lines were used to perform the experiments. MTT was applied to screen the effective small molecular inhibitors suppressing growth of GBM cells. Colony formation and BrdU staining assays were performed to assess the inhibition effect of compound- on the proliferation of GBM cells. The cell cycle and apoptosis were measured by flow cytometry and western blot to analyze the changes of the relative protein expressions and their signal pathways.

Results: Compound- could suppress GBM cells in a time- and dose-dependent manner. Treatment of compound- could arrest cell cycle in S phase through up-regulating P21 and P53, and down-regulating cyclin A and E in a dose-dependent manner. Compound- also induced mitochondrial-dependent apoptosis by increasing Bax, cleaved caspase-3, cleaved caspase-9 and poly ADP-ribose polymerase expression, and decreasing Bcl-2 expression. Moreover, phosphorylated (p)-AKT and p-ERK levels relating to cell proliferation were dramatically decreased in U87 and LN229 cells.

Conclusions: Our results suggest that it is the first time to report the compound- with benzimidazoleisoquinolinone core playing antitumor activity in human glioblastoma cells by inhibiting Raf/MEK/ERK and PI3K/AKT signaling pathways, and it could be as a lead compound for the further development of targeted glioblastoma cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022716PMC
http://dx.doi.org/10.1186/s12935-018-0588-xDOI Listing

Publication Analysis

Top Keywords

gbm cells
12
cell proliferation
8
raf/mek/erk pi3k/akt
8
activity human
8
cell lines
8
human glioblastoma
8
u87 ln229
8
cell cycle
8
dose-dependent manner
8
cell
6

Similar Publications

The tumor microenvironment in glioblastoma (GBM) is characterized by a pronounced immunosuppressive state, which significantly hampers tumor treatment and contributes to treatment resistance. While our previous research established that black phosphorus nanosheets (BPNS) inhibited glioblastoma cell migration and invasion, the impact of BPNS on the anti-tumor-associated immune mechanism remains unexplored. This study firstly investigated whether BPNS could modulate the tumor microenvironment through immunotherapy and elucidated the underlying mechanisms.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

In glioblastoma, glioma-associated microglia/macrophages (GAMs) represent the major population of tumor infiltrating cells, with up to one half of the cells of the tumor mass. Recent studies have shown that microglia are involved in the maintenance of immunological homeostasis and protection against autoimmunity. However, despite the growing body of evidence on the topic, many aspects are yet to be clarified.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor that primarily affects adults. The Stupp Protocol, which includes surgical resection, chemoradiation, and monotherapy with temozolomide (TMZ), is the standard treatment regimen for GBM. However, repeated use of TMZ leads to resistance in GBM cells, resulting in a poor prognosis for patients.

View Article and Find Full Text PDF

Objective: One of the most malignant types of tumors with a remarkable ability of recurrence rate and aggressiveness is glioblastoma multiforme(GBM). Anyway, according to the restricted remedies accessible for the treatment of this serious tumor, there is no confident and stable therapeutic strategy. Notably, bioinformatics analysis can detect many effective genes in the diagnosis and treatment of GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!