Scope: The maintenance of interpodocyte slit diaphragm is critical in the sieving function of glomerular filtration barrier. Eucalyptol is a natural constituent in aromatic plants with antioxidant properties. This study investigates whether and how eucalyptol inhibits podocyte slit diaphragm malfunction in glucose-exposed podocytes and diabetic mouse kidneys.

Methods And Results: Podocytes were incubated in media containing 33 mm glucose with 1-20 μm eucalyptol. The in vivo model employed db/db mice orally administrated with 10 mg kg eucalyptol. Nontoxic eucalyptol enhanced podocyte expression of nephrin, podocin, FAT-1, CD2AP, and α-actinin-4 diminished by glucose. Oral administration of eucalyptol augmented the induction of the slit diaphragm proteins, α-actinin-4, and integrin β1 in diabetic kidneys, and ameliorated glomerular fibrosis and foot process effacement. Eucalyptol counteracted the receptor of advanced glycation end products (RAGE) induction in podocytes with glucose or AGE-BSA, and elevated the reduction of the slit diaphragm proteins by AGE-BSA. Eucalyptol attenuated the RAGE induction and AGE accumulation in diabetic kidneys. The blockade of ERK-c-Myc signaling enhanced the nephrin and CD2AP expression downregulated in AGE-exposed podocytes. These results indicate that eucalyptol blocked glucose-induced AGE-RAGE axis and podocyte injury through disturbing RAGE-ERK-c-Myc signaling.

Conclusion: Eucalyptol may be a potent agent antagonizing diabetes-associated malformation of interpodocyte slit junction and podocyte actin cytoskeleton.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201800302DOI Listing

Publication Analysis

Top Keywords

slit diaphragm
16
eucalyptol
11
eucalyptol inhibits
8
advanced glycation
8
podocyte slit
8
interpodocyte slit
8
diaphragm proteins
8
diabetic kidneys
8
rage induction
8
slit
6

Similar Publications

The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).

View Article and Find Full Text PDF

The Role of Podocytes in Lupus Pathology.

Curr Rheumatol Rep

December 2024

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-937, Boston, MA, 02215, USA.

Purpose Of Review: Kidney injury due to lupus nephritis (LN) is a severe and sometimes life-threatening sequela of systemic lupus erythematosus. Autoimmune injury to podocytes has been increasingly demonstrated to be a key driver of LN-related kidney injury because these cells play key roles in glomerular filtration barrier homeostasis. Irreparable podocyte injury impairs these processes and can lead to proteinuria, which is an indicator of poor prognosis in LN.

View Article and Find Full Text PDF

Triptolide Attenuates Renal Slit Diagram to Tight Junction Transition in Diabetic Kidney Disease by Regulating Nrf2-Ferroptosis Pathway.

Am J Chin Med

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China.

Diabetic kidney disease (DKD) is a prominent etiological factor underlying the onset of end-stage kidney disease, which is characterized by the presence of microalbuminuria. Recent studies have found that high glucose can induce mitochondrial dysfunction and ferroptosis in podocytes, leading to renal impairment and proteinuria. Triptolide was extracted from traditional Chinese medicine Hook F.

View Article and Find Full Text PDF

Background: The p.Arg218Gln (R218Q) mutation in the inverted formin 2 (INF2) gene causes podocytopathy prone to focal segmental glomerulosclerosis (FSGS). This mutation disrupts the ability of INF2 to sequester DYNLL1, thus promoting dynein-mediated mistrafficking of the slit diaphragm protein, nephrin, to proteolytic pathways.

View Article and Find Full Text PDF

Background: EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!