Nanoporous gold (NPG) structures were prepared on the surface of a gold microelectrode (Au-μE) by an anodization-reduction method. Cyclic voltammetry and field emission scanning electron microscopy were used to study the electrochemical properties and the morphology of the nanostructured film. Voltammetry showed an improved sensitivity for dopamine (DA) oxidation at this microelectrode when compared to a bare gold microelectrode, with a peak near 0.2 V (vs. Ag/AgCl) at a scan rate of 0.1 V s. This is due to the increased surface area and roughness. Square wave voltammetry shows a response that is linear in the 0.1-10 μmol L DA concentration range, with a 30 nmol L detection limit and a sensitivity of 1.18 mA (μmol L) cm. The sensor is not interfered by ascorbic acid. The reproducibility, repeatability, long-term stability and real sample analysis (spiked urine) were assessed, and acceptable performance was achieved. The "proof-of-concept" detection of dopamine release was demonstrated by using scanning electrochemical microscopy (SECM) with the aim of future applications for single cell analysis. Graphical abstract A reproducible electrochemical approach was proposed to fabricate an NPG-microelectrode for DA detection, with enhanced sensitivity and selectivity. Besides, a proof-of-concept detection of DA release was also demonstrated by using SECM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-018-2898-z | DOI Listing |
Langmuir
December 2024
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, 45137-66731, Zanjan, Iran.
In modern analytical chemistry, one of the primary goals is to develop miniaturized, easy-to-use sensing tools, particularly those with multitasking capabilities. In this work, we designed a mini-voltammetric cell that integrates a modified Au microelectrode (Au/Au NPs as the working electrode) and an Ag/AgCl reference electrode installed within a micropipette tip. This combined tool not only enables portable and on-site microvolume sampling─requiring only a microvolume (around 20-40 μL) or a single droplet─but also facilitates direct micro-electroanalysis in a short time.
View Article and Find Full Text PDFAnal Methods
November 2024
Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
Enzyme-linked immunosorbent assays are commonly used for clinical biomarker detection. However, they remain resource-intensive and difficult to scale globally. Here we present a miniaturized direct electronic biosensing modality which generates a simple and sensitive, quantitative, resistive readout of analyte binding in immunoassays.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Department of MedicalOncology, Harbin Medical University Cancer Hospital, 150 Haping Road Nangang District, Harbin, Heilongjiang Province 150040, China.
The advancement of molecular diagnostics for lung cancer stratification and monitoring is essential for the strategic planning and prompt modification of treatments, aiming to enhance clinical results. To address this need, we suggest a nanocavity structure designed to sensitively analyze the protein signature on small extracellular vesicles (sEVs). This approach facilitates precise, noninvasive staging and treatment monitoring of lung cancer.
View Article and Find Full Text PDFAnal Biochem
February 2025
Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
Early detection of Reactive oxygen species (ROS) concentration is very important in cancer diagnosis, pathological examinations, and health screening. Studies show that changes in ROS concentration occurs in a short time, causing irreparable damage to living cells and organs. Miniaturized sensors and microelectrodes are capable of online monitoring of electrochemical reactions both in vitro and in vivo.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.
The design and characterization of thin-film ribbon cables as electrical interconnects for implanted neural stimulation and recording devices are reported. Our goal is to develop flexible and extensible ribbon cables that integrate with thin-film, cortical penetrating microelectrode arrays (MEAs). Amorphous silicon carbide (a-SiC) and polyimide were employed as the structural elements of the ribbon cables and multilayer titanium/gold thin films as electrical traces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!