Nontypeable (NTHi) is a major cause of community acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. A current effort in NTHi vaccine development has focused on generating humoral responses and has been greatly impeded by antigenic variation among the numerous circulating NTHi strains. In this study, we showed that pulmonary immunization of mice with killed NTHi generated broad protection against lung infection by different strains. While passive transfer of immune antibodies protected only against the homologous strain, transfer of immune T cells conferred protection against both homologous and heterologous strains. Further characterization revealed a strong Th17 response that was cross-reactive with different NTHi strains. Responding Th17 cells recognized both cytosolic and membrane-associated antigens, while immune antibodies preferentially responded to surface antigens and were highly strain specific. We further identified several conserved proteins recognized by lung Th17 cells during NTHi infection. Two proteins yielding the strongest responses were tested as vaccine candidates by immunization of mice with purified proteins plus an adjuvant. Immunization induced antigen-specific Th17 cells that recognized different strains and, upon adoptive transfer, conferred protection. Furthermore, immunized mice were protected against challenge with not only NTHi strains but also a fully virulent, encapsulated strain. Together, these results show that the immune mechanism of cross-protection against pneumonia involves Th17 cells, which respond to a broad spectrum of antigens, including those that are highly conserved among NTHi strains. These mechanistic insights suggest that inclusion of Th17 antigens in subunit vaccines offers the advantage of inducing broad protection and complements the current antibody-based approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065041PMC
http://dx.doi.org/10.1073/pnas.1802261115DOI Listing

Publication Analysis

Top Keywords

th17 cells
20
nthi strains
16
broad protection
12
nthi
8
immunization mice
8
transfer immune
8
immune antibodies
8
conferred protection
8
cells recognized
8
th17
7

Similar Publications

[High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Wulumuqi 830011, China. *Corresponding author, E-mail:

Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls.

View Article and Find Full Text PDF

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Background: Recurrent pregnancy loss (RPL) remains a complex and challenging reproductive issue often associated with immunological abnormalities. This study investigates the immunomodulatory effects of intradermal lymphocyte therapy in RPL patients, exploring cellular, molecular, and cytokine changes, with specific attention to individuals with positive anti-thyroid peroxidase antibodies (Anti-TPO).

Methods: The study included 105 patients with RPL, divided into Anti-TPO positive RPL patients (n = 25), Anti-TPO negative RPL patients (n = 38), and RPL patients without lymphocyte immunotherapy (LIT) (n = 42).

View Article and Find Full Text PDF

IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells.

View Article and Find Full Text PDF

Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!