An extract of Dendropanax morbifera branch exerts antioxidant, anti-inflammatory, antithrombotic, and anticancer activities. The purpose of this study was to investigate the effect of the extract in isoproterenol-induced cardiac hypertrophy. Phalloidin staining showed that treatment with the extract dramatically prevents isoproterenol-induced H9c2 cell enlargement and the expression of cardiac hypertrophic marker genes, including atrial natriuretic peptide (ANP) and B-type brain natriuretic peptide (BNP). Further, pretreatment with the extract decreased isoproterenol-induced GATA4 and Sp1 expression in H9c2 cells. Overexpression of Sp1 induced the expression of GATA4. The forced expression of Sp1 or its downstream target GATA4, as well as the co-transfection of Sp1 and GATA4 increased the expression of ANP, which was decreased by treatment with the extract. To further elucidate the regulation of the Sp1/GATA4-mediated expression of ANP, knockdown experiments were performed. Transfection with small interfering RNAs (siRNAs) for Sp1 or GATA4 decreased ANP expression. The extract did not further inhibit the expression of ANP reduced by the transfection of GATA4 siRNA. Sp1 knockdown did not affect the expression of ANP that was induced by the overexpression of GATA4; however, GATA4 knockdown abolished the expression of ANP that had been induced by Sp1 overexpression. The extract treatment also attenuated the isoproterenol-induced activation of p38 MAPK, ERK1/2, and JNK1. Hesperidin, catechin, 2,5-dihydroxybenzoic acid, and salicylic acid are the main phenolic compounds present in the extract as observed by high performance liquid chromatography. Hesperidin and 2,5-dihydroxybenzoic acid attenuated isoproterenol-induced cardiac hypertrophy. These findings suggest that the D. morbifera branch extract prevents cardiac hypertrophy by downregulating the activation of Sp1/GATA4 and MAPK signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0192415X18500532DOI Listing

Publication Analysis

Top Keywords

expression anp
20
cardiac hypertrophy
12
expression
10
extract
9
dendropanax morbifera
8
morbifera branch
8
isoproterenol-induced cardiac
8
treatment extract
8
natriuretic peptide
8
gata4
8

Similar Publications

The seeds of are popularly used in the management of cardiovascular conditions. This study was undertaken to evaluate the capacity of the seed ethanolic extract of (EE) to prevent the development of cardiac hypertrophy in rats. Isoproterenol (0.

View Article and Find Full Text PDF

Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.

View Article and Find Full Text PDF

Axl deficiency promotes preeclampsia and vascular malformations in mice.

Mol Ther Nucleic Acids

March 2025

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.

Preeclampsia (PE) is a significant complication of pregnancy, occurring in approximately 10% of pregnancies. However, the underlying mechanisms of this condition remain unclear. Placentation and tumorigenesis both share many characteristics, but PE is the result of insufficient placentation, in contrast to the overaggression of tumorigenesis.

View Article and Find Full Text PDF

Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.

Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.

View Article and Find Full Text PDF

[Protection of vasodilatory function in rats with post-infarction heart failure by salvianolic acid B via modulating Piezo1 channel].

Zhongguo Zhong Yao Za Zhi

October 2024

Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases Beijing 100091, China Heilongjiang University of Chinese Medicine Harbin 150040, China.

To explore the regulation of vasodilatory function in rats with post-infarction heart failure by salvianolic acid B(Sal-B) based on the mechanosensitive ion channel, namely Piezo1. A post-infarction heart failure model of rats was prepared by ligation of the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into the model group, Sal-B group(0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!