Zearalenone-Promoted Follicle Growth through Modulation of Wnt-1/β-Catenin Signaling Pathway and Expression of Estrogen Receptor Genes in Ovaries of Postweaning Piglets.

J Agric Food Chem

Shandong Zhongcheng Feed Technology Co., Ltd. , No. 226 Gongye 2 Road , Feicheng City , Shandong Province 271600 , P.R. China.

Published: August 2018

Feedstuffs are severely contaminated by zearalenone (ZEA) worldwide. A specific dietary level of ZEA could cause malformations of the reproductive organs of sows, false estrus, decreased litter size, and abortion. However, the underlying mechanisms are still not clear. The objectives of the present study were to assess the effects of ZEA on morphology, distribution, and expression of estrogen receptors (ERα and ERβ) in the ovaries of postweaning piglets. Furthermore, the relationship between ERs/glycogen synthase kinase (GSK)-3β-dependent pathways mediated by ZEA and the Wnt-1/β-catenin signaling pathway was examined. Forty healthy weaning piglets were allocated to the following four treatment groups: piglets fed with basal diet only (control), and ZEA0.5, ZEA1.0, and ZEA1.5, which were fed basal diets supplemented with ZEA at 0.5, 1.0, and 1.5 mg·kg, respectively. Then, the expression of GSK-3β, ERα, ERβ, and Wnt-1/β-catenin were examined histomorphologically and immunohistochemically. Results showed that the proportion of primordial follicles (PrF's) decreased ( p < 0.001) but that of atretic primordial follicles (APFs) increased ( p < 0.001) with increasing dietary ZEA levels. More interestingly, the immunopositivity of ERβ in the ovaries was stronger than that of ERα with the same treatment. The relative mRNA and protein expression levels of ERα, ERβ, Wnt-1, β-catenin, and GSK-3β in the ovaries of postweaning gilts increased linearly ( p < 0.05) as dietary ZEA concentrations increased. Moreover, the accumulation of Wnt-1 and β-catenin in the ovaries indicated that ZEA activated the Wnt-1/β-catenin pathway, mediated by ERs/GSK-3β. Our results strongly suggested that ovarian follicles in the ZEA (0.5-1.5 mg·kg)-treated groups were highly proliferative state, indicating that ZEA promoted ovarian development. The results also suggested that ZEA activates the ERs/GSK-3β-dependent Wnt-1/β-catenin signaling pathway, indicating its important role in accelerating development of the ovaries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b02101DOI Listing

Publication Analysis

Top Keywords

wnt-1/β-catenin signaling
12
signaling pathway
12
ovaries postweaning
12
erα erβ
12
zea
11
expression estrogen
8
postweaning piglets
8
erβ ovaries
8
fed basal
8
primordial follicles
8

Similar Publications

Stage-Dependent Fibrotic Gene Profiling of WISP1-Mediated Fibrogenesis in Human Fibroblasts.

Cells

December 2024

Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA.

Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis.

View Article and Find Full Text PDF

Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders.

Int Immunopharmacol

January 2025

Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address:

As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases.

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells.

View Article and Find Full Text PDF

In this study, based on Walker 256 in vitro experiments, CCK-8 assay, clone formation assay, wound healing assay, and flow cytometry were used to detect cell apoptosis and cell cycle. It was found that schisandrin may have significant anti-tumor effects in vitro by inhibiting TGF-β/Smad signaling pathway. In addition, in vivo experiments, immunohistochemistry was used to observe the expression of HIF-1α, VEGF and VEGFR-2 in tumor tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Colorectal cancer (CRC) is a major global health issue, ranking as the third most diagnosed cancer in men and second in women, with high mortality rates.
  • Natural compounds like curcumin and resveratrol show anticancer potential but face challenges in solubility and bioavailability, which can be improved using biogenic silica (BS) as a carrier.
  • The study found that curcumin-resveratrol-loaded BS significantly reduced cell viability in CRC cell lines and affected important genes and signaling pathways, although further research and safety assessments are necessary before clinical application.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!