Simulated-microgravity (SMG) promotes cell-apoptosis. We demonstrated that SMG inhibited cell proliferation/metastasis via FAK/RhoA-regulated mTORC1 pathway. Since mTORC1, NF-κB, and ERK1/2 signaling are important in cell apoptosis, we examined whether SMG-enhanced apoptosis is regulated via these signals controlled by FAK/RhoA in BL6-10 melanoma cells under clinostat-modelled SMG-condition. We show that SMG promotes cell-apoptosis, alters cytoskeleton, reduces focal adhesions (FAs), and suppresses FAK/RhoA signaling. SMG down-regulates expression of mTORC1-related Raptor, pS6K, pEIF4E, pNF-κB, and pNF-κB-regulated Bcl2, and induces relocalization of pNF-κB from the nucleus to the cytoplasm. In addition, SMG also inhibits expression of nuclear envelope proteins (NEPs) lamin-A, emerin, sun1, and nesprin-3, which control nuclear positioning, and suppresses nuclear positioning-regulated pERK1/2 signaling. Moreover, rapamycin, the mTORC1 inhibitor, also enhances apoptosis in cells under 1 g condition via suppressing the mTORC1/NF-κB pathway. Furthermore, the FAK/RhoA activator, toxin cytotoxic necrotizing factor-1 (CNF1), reduces cell apoptosis, restores the cytoskeleton, FAs, NEPs, and nuclear positioning, and converts all of the above SMG-induced changes in molecular signaling in cells under SMG. Therefore, our data demonstrate that SMG reduces FAs and alters the cytoskeleton and nuclear positioning, leading to enhanced cell apoptosis via suppressing the FAK/RhoA-regulated mTORC1/NF-κB and ERK1/2 pathways. The FAK/RhoA regulatory network may, thus, become a new target for the development of novel therapeutics for humans under spaceflight conditions with stressed physiological challenges, and for other human diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073227PMC
http://dx.doi.org/10.3390/ijms19071994DOI Listing

Publication Analysis

Top Keywords

nuclear positioning
16
alters cytoskeleton
12
cell apoptosis
12
reduces focal
8
focal adhesions
8
cytoskeleton nuclear
8
positioning leading
8
leading enhanced
8
apoptosis suppressing
8
mtorc1/nf-κb erk1/2
8

Similar Publications

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Differentiation of glioblastoma G4 and two types of meningiomas using FTIR spectra and machine learning.

Anal Biochem

December 2024

Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland. Electronic address:

Brain tumors are among the most dangerous, due to their location in the organ that governs all life processes. Moreover, the high differentiation of these poses a challenge in diagnostics. Therefore, this study focused on the chemical differentiation of glioblastoma G4 (GBM) and two types of meningiomas (atypical - MAtyp and angiomatous - MAng) were done using Fourier Transform InfraRed (FTIR) spectroscopy, combined with statistical, multivariate, machine learning and rate of spectrum changes methods.

View Article and Find Full Text PDF

This study proposes a novel, highly sensitive neutron detector design utilizing a unique multi-layered configuration. Each layer consists of a LiF: ZnS(Ag) scintillator coupled with a transparent neutron moderator that also functions as a light guide for the Silicon Photomultiplier (SiPM) light sensor. This design offers a cost-effective and readily available alternative for existing neutron detectors.

View Article and Find Full Text PDF

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Integrative taxonomy of the genus Pseudoacanthocephalus (Acanthocephala: Echinorhynchida) in China, with the description of two new species and the characterization of the mitochondrial genomes of Pseudoacanthocephalus sichuanensis sp. n. and Pseudoacanthocephalus nguyenthileae.

Parasit Vectors

December 2024

Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.

Background: Acanthocephalans (thorny headed worms) of the genus Pseudoacanthocephalus mainly parasitize amphibians and reptiles across the globe. Some species of the genus Pseudoacanthocephalus also can accidentally infect human and cause human acanthocephaliasis. Current knowledge of the species composition of the genus Pseudoacanthocephalus from amphibians and reptiles in China is incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!