Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene.

Materials (Basel)

School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.

Published: July 2018

Scientific and engineering progress associated with increased interest in healthcare monitoring, therapy, and human-machine interfaces has rapidly accelerated the development of bio-integrated multifunctional devices. Recently, compensation for the cons of existing materials on electronics for health care systems has been provided by carbon-based nanomaterials. Due to their excellent mechanical and electrical properties, these materials provide benefits such as improved flexibility and stretchability for conformal integration with the soft, curvilinear surfaces of human tissues or organs, while maintaining their own unique functions. This review summarizes the most recent advanced biomedical devices and technologies based on two most popular carbon based materials, carbon nanotubes (CNTs) and graphene. In the beginning, we discuss the biocompatibility of CNTs and graphene by examining their cytotoxicity and/or detrimental effects on the human body for application to bioelectronics. Then, we scrutinize the various types of flexible and/or stretchable substrates that are integrated with CNTs and graphene for the construction of high-quality active electrode arrays and sensors. The convergence of these carbon-based materials and bioelectronics ensures scalability and cooperativity in various fields. Finally, future works with challenges are presented in bio-integrated electronic applications with these carbon-based materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073353PMC
http://dx.doi.org/10.3390/ma11071163DOI Listing

Publication Analysis

Top Keywords

cnts graphene
12
carbon-based materials
8
materials
5
flexible stretchable
4
stretchable bio-integrated
4
bio-integrated electronics
4
electronics based
4
based carbon
4
carbon nanotube
4
graphene
4

Similar Publications

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Redefining the Role of Cobalt Oxide in Ethane Dehydroaromatization: Insights into Enhanced Catalytic Activity and Stability.

ACS Appl Mater Interfaces

December 2024

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Cobalt is recognized as an active catalyst in ethane dehydroaromatization (EDA) reactions due to its efficient ethane cracking capability. In order to optimize cobalt's strong ethane cracking capability, it was loaded onto HZSM-5 zeolite through impregnation. This study was conducted with Co-loaded HZSM-5 catalysts with an incipient wetness impregnation method and witnessed an increase of catalytic activity with a long induction period.

View Article and Find Full Text PDF

Trace Metal Impurities Induce Differences in Lithium-Sulfur Batteries.

ACS Nano

December 2024

Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Carbon nanotubes (CNTs) with exceptional conductivity have been widely adopted in lithium-sulfur (Li-S) batteries. While trace metal impurities in CNTs have demonstrated electrocatalytic activity in various catalytic processes, their influence on sulfur electrocatalysis in Li-S batteries has been largely overlooked. Herein, we reveal that the trace metal impurities content in CNTs significantly improves the specific capacity and cycling performance of Li-S batteries by analyzing both our own results and previous literature with CNTs as the sulfur hosts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!