Systematic Experimental Assessment of a 2D-Motion Sensor to Detect Relative Movement between Residual Limb and Prosthetic Socket.

Sensors (Basel)

Institute for Mechatronic Systems in Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany.

Published: July 2018

A sensor system for measuring the relative movement between prosthetic socket and residual limb based on a 2D-motion sensor is introduced and thoroughly tested experimentally. The quantitative analysis of test rig evaluation is used to identify advantageous sensor settings and liner configurations. Considering these favorable settings, sensor functionality is quantified to errrel=0.52±1.78%. Advancing to convex measurement surfaces, the sensor shows absolute errors of errabs≤1 mm in an observable measurement scenario. The feasibility of measuring gait-induced relative movement with the proposed 2D-motion sensor is shown via a biomechanical plausibility study. Overall, the findings suggest that the proposed sensor system is suitable for investigating the relative movement between residual limb and prosthetic socket in dynamic gait situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068854PMC
http://dx.doi.org/10.3390/s18072170DOI Listing

Publication Analysis

Top Keywords

relative movement
16
2d-motion sensor
12
residual limb
12
prosthetic socket
12
sensor
8
movement residual
8
limb prosthetic
8
sensor system
8
systematic experimental
4
experimental assessment
4

Similar Publications

Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.

View Article and Find Full Text PDF

In recent years, the recreational use of xylazine has increased dramatically in the USA. Although xylazine has been used as an anesthetic in veterinary medicine for decades, little is known about its behavioral effects. We took advantage of the planarian's innate negative phototaxis, the reliable movement from the light side to the dark side of a Petri dish, to explore the organism's suitability as an animal model for investigating the preclinical pharmacology of xylazine.

View Article and Find Full Text PDF

Identifying the Molecular Signatures of Organic Matter Leached from Land-Applied Biosolids via 21 T FT-ICR Mass Spectrometry.

Environ Sci Technol

January 2025

National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.

Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.

View Article and Find Full Text PDF

Combining radio-telemetry and radar measurements to test optimal foraging in an aerial insectivore bird.

Elife

January 2025

Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel.

Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts () in response to insect movements over Israel's Hula Valley.

View Article and Find Full Text PDF

Background: Research has increasingly explored maternal resilience or protective factors that enable women to achieve healthier maternal and child outcomes. However, it has not adequately examined maternal resilience using a culturally-relevant, socio-ecological lens or how it may be influenced by early-life stressors and resources. The current study contributes to the literature on maternal resilience by qualitatively exploring the salient multi-level stressors and resources experienced over the lifecourse by predominantly low-income and minoritized women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!