Rapid high-resolution measurement of DNA replication timing by droplet digital PCR.

Nucleic Acids Res

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.

Published: November 2018

Genomes are replicated in a reproducible temporal pattern. Current methods for assaying allele replication timing are time consuming and/or expensive. These include high-throughput sequencing which can be used to measure DNA copy number as a proxy for allele replication timing. Here, we use droplet digital PCR to study DNA replication timing at multiple loci in budding yeast and human cells. We establish that the method has temporal and spatial resolutions comparable to the high-throughput sequencing approaches, while being faster than alternative locus-specific methods. Furthermore, the approach is capable of allele discrimination. We apply this method to determine relative replication timing across timing transition zones in cultured human cells. Finally, multiple samples can be analysed in parallel, allowing us to rapidly screen kinetochore mutants for perturbation to centromere replication timing. Therefore, this approach is well suited to the study of locus-specific replication and the screening of cis- and trans-acting mutants to identify mechanisms that regulate local genome replication timing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212846PMC
http://dx.doi.org/10.1093/nar/gky590DOI Listing

Publication Analysis

Top Keywords

replication timing
28
replication
8
dna replication
8
timing
8
timing droplet
8
droplet digital
8
digital pcr
8
allele replication
8
high-throughput sequencing
8
human cells
8

Similar Publications

Cells must limit RNA-RNA interactions to avoid irreversible RNA entanglement. Cells may prevent deleterious RNA-RNA interactions by genome organization to avoid complementarity however, RNA viruses generate long, perfectly complementary antisense RNA during replication. How do viral RNAs avoid irreversible entanglement? One possibility is RNA sequestration into biomolecular condensates.

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Current temporal studies of DNA replication are either low-resolution or require complex cell synchronisation and/or sorting procedures. Here we introduce Nanotiming, a single-molecule, nanopore sequencing-based method producing high-resolution, telomere-to-telomere replication timing (RT) profiles of eukaryotic genomes by interrogating changes in intracellular dTTP concentration during S phase through competition with its analogue bromodeoxyuridine triphosphate (BrdUTP) for incorporation into replicating DNA. This solely demands the labelling of asynchronously growing cells with an innocuous dose of BrdU during one doubling time followed by BrdU quantification along nanopore reads.

View Article and Find Full Text PDF

Polymerase-Usage Sequencing Identifies Initiation Zones with Less Bias Across S phase in Mouse Embryonic Stem Cells.

J Biochem

January 2025

Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

Various methods have been developed to map replication initiation zones (IZs) genome-wide, often finding far fewer IZs than expected. In particular, IZs corresponding to later stages of S phase are under-represented. Here, we re-analyzed IZs with respect to replication timing in mouse ES cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!