AI Article Synopsis

  • Dietary nondigestible oligosaccharides (GFAs) were found to reduce allergic responses in cow-milk-allergic mice by increasing regulatory T cells (Tregs) and boosting interleukin 10 (IL-10) and transforming growth factor β (TGF-β) levels.
  • The study involved sensitizing mice with whey and cholera toxin, then comparing immune responses in those fed a GFA diet versus a control diet, with a focus on mRNA expression and antibody responses.
  • Results showed that GFAs significantly decreased allergic reactions and bolstered protective immune factors, while blocking IL-10 and TGF-β activity diminished these benefits, suggesting a crucial role for these cytokines in modulating allergic responses to cow's milk

Article Abstract

Background: Dietary nondigestible, short-chain galacto-, long-chain fructo-, and pectin-derived acidic oligosaccharides (GFAs) lower the effector response in cow-milk-allergic (CMA) mice; and forkhead box P3 (Foxp3)-positive regulatory T cells (Tregs) were shown to contribute to this.

Objective: The aim of this study was to assess the contribution of interleukin 10 (IL-10) and transforming growth factor β (TGF-β) to the protective effect of the GFA diet in CMA mice.

Methods: Female C3H/HeOuJ mice, 3-4 wk old, were orally sensitized with cholera toxin (Sham) or whey and cholera toxin (Whey) 1 time/wk for 5 consecutive weeks and challenged with whey 1 wk later. The mice were fed a control or 1% GFA (9:2:1) (Whey+GFA) diet starting 2 wk before the first sensitization. In a second experiment, the mice were also injected with αIL-10 receptor (αIL-10r), αTGF-β, or isotype control antibodies 24 h before each sensitization. The acute allergic skin response, anaphylaxis score, whey-specific IgE, mucosal mast cell protease 1 (mMCP-1), and Treg frequency in the mesenteric lymph nodes (MLNs) and intestinal Foxp3, Il10, and Tgfb mRNA expression were determined.

Results: In Whey+GFA mice, intestinal Il10, Tgfb, or Foxp3 mRNA expression was 2-10 times higher (P < 0.05) and the MLN Treg frequency was 25% higher compared with Whey mice (P < 0.05). The acute allergic skin response was 50% lower in Whey+GFA mice compared with Whey mice (P < 0.01), and IL-10 receptor (IL-10r) or TGF-β neutralizing antibodies prevented this protective effect (P < 0.001). The Whey mice had higher serum mMCP-1 concentrations and whey-immunoglobulin E (-IgE) levels than Sham mice (P < 0.01), whereas these were not higher in Whey+GFA mice, and neutralizing antibodies partially interfered with these responses.

Conclusions: Dietary GFAs enhance the Treg frequency in the MLNs and mucosal IL-10 and TGF-β transcription while suppressing the allergic effector response. Neutralizing antibodies showed that the allergy-protective effect of the GFA diet was mediated by IL-10 and TGF-β in CMA mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074790PMC
http://dx.doi.org/10.1093/jn/nxy104DOI Listing

Publication Analysis

Top Keywords

cholera toxin
8
il10 tgfb
8
mrna expression
8
mice
6
il-10 receptor
4
receptor tgf-β
4
tgf-β neutralization
4
neutralization abrogates
4
abrogates protective
4
protective specific
4

Similar Publications

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Objectives: The objective of this study is to investigate lipopolysaccharid-binding protein (LBP), zonulin and calprotectin as markers of bacterial translocation, disturbed gut barrier and intestinal inflammation in patients with radiographic axial spondyloarthritis (r-axSpA) during tumour necrosis factor inhibitor (TNFi) therapy and to analyze the association between disease activity, response to treatment and biomarker levels.

Methods: Patients with active r-axSpA of the German Spondyloarthritis Inception Cohort starting TNFi were compared with controls with chronic back pain. Serum levels of LBP, zonulin and calprotectin were measured at baseline and after 1 year of TNFi therapy.

View Article and Find Full Text PDF

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!