The composite cathode of an all-solid-state battery composed of various solid-state components requires a dense microstructure and a highly percolated solid-state interface different from that of a conventional liquid-electrolyte-based Li-ion battery. Indeed, the preparation of such a system is particularly challenging. In this study, quantitative analyses of composite cathodes by three-dimensional reconstruction analysis were performed beyond the existing qualitative analysis, and their microstructures and reaction interfaces were successfully analyzed. Interestingly, various quantitative values of structure properties (such as the volume ratio, connectivity, tortuosity, and pore formation) associated with material optimization and process development were predicted, and they were found to result in limited electrochemical charge/discharge performances. We also verified that the effective two-phase boundaries were significantly suppressed to ∼23% of the total volume because of component dispersion and packing issues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b04204DOI Listing

Publication Analysis

Top Keywords

analysis microstructures
8
microstructures reaction
8
reaction interfaces
8
composite cathodes
8
three-dimensional reconstruction
8
quantitative analysis
4
interfaces composite
4
cathodes all-solid-state
4
all-solid-state batteries
4
batteries three-dimensional
4

Similar Publications

Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.

View Article and Find Full Text PDF

This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.

View Article and Find Full Text PDF

Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.

View Article and Find Full Text PDF

Neonatal inflammation and near-term white matter microstructure in infants born very preterm.

Neuroimage Rep

December 2024

Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA.

Background: Severe neonatal inflammatory conditions in very preterm infants (VPT: <32 weeks gestational age, GA) are linked to adverse neurodevelopmental outcomes. Differences in white matter (WM) microstructure of the corpus callosum (CC) have been observed at age 6 in VPT children with a history of severe neonatal inflammation. The goal of this study was to determine whether these CC differences can be detected at term-equivalent age using diffusion MRI (dMRI), and whether neonatal inflammation is associated with altered WM in additional tracts implicated in the encephalopathy of prematurity.

View Article and Find Full Text PDF

Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.

Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!