This video presents the use of transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) to compare the state of minerals in vesicles released by two human bone cell lines: hFOB 1.19 and Saos-2. These cell lines, after treatment with ascorbic acid (AA) and β-glycerophosphate (β-GP), undergo complete osteogenic transdifferentiation from proliferation to mineralization and produce matrix vesicles (MVs) that trigger apatite nucleation in the extracellular matrix (ECM). Based on Alizarin Red-S (AR-S) staining and analysis of the composition of minerals in cell lysates using ultraviolet (UV) light or in vesicles using TEM imaging followed by EDX quantitation and ion mapping, we can infer that osteosarcoma Saos-2 and osteoblastic hFOB 1.19 cells reveal distinct mineralization profiles. Saos-2 cells mineralize more efficiently than hFOB 1.19 cells and produce larger mineral deposits that are not visible under UV light but are similar to hydroxyapatite (HA) in that they have more Ca and F substitutions. The results obtained using these techniques allow us to conclude that the process of mineralization differs depending on the cell type. We propose that, at the cellular level, the origin and properties of vesicles predetermine the type of minerals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101988 | PMC |
http://dx.doi.org/10.3791/57423 | DOI Listing |
Radiat Oncol
September 2011
Department of Radiooncology, University of Heidelberg, (INF 400), Heidelberg 69120, Germany.
Introduction: The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT).
Materials And Methods: Clonogenic assays after different doses of heavy ions were performed.
Biol Pharm Bull
January 2006
Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan.
Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, was investigated for its effects on differentiation of osteoblasts. By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, we have shown that fraxetin exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!