Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, a method to synthesize gold, palladium, and platinum aerogels via a rapid, direct solution-based reduction is presented. The combination of various precursor noble metal ions with reducing agents in a 1:1 (v/v) ratio results in the formation of metal gels within seconds to minutes compared to much longer synthesis times for other techniques such as sol-gel. Conducting the reduction step in a microcentrifuge tube or small volume conical tube facilitates a proposed nucleation, growth, densification, fusion, equilibration model for gel formation, with final gel geometry smaller than the initial reaction volume. This method takes advantage of the vigorous hydrogen gas evolution as a by-product of the reduction step, and as a consequence of reagent concentrations. The solvent accessible specific surface area is determined with both electrochemical impedance spectroscopy and cyclic voltammetry. After rinsing and freeze drying, the resulting aerogel structure is examined with scanning electron microscopy, X-ray diffractometry, and nitrogen gas adsorption. The synthesis method and characterization techniques result in a close correspondence of aerogel ligament sizes. This synthesis method for noble metal aerogels demonstrates that high specific surface area monoliths may be achieved with a rapid and direct reduction approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101767 | PMC |
http://dx.doi.org/10.3791/57875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!