Methionine enkephalin, leucine enkephalin, [D-Ala2, D-Leu5] enkephalin, alpha-neoendorphin, beta-endorphin, dynorphin (1-13) and ethylketocyclazocine inhibited the contractions of rabbit ear artery ring segments elicited by transmural nerve stimulation at 8 Hz. Ethylketocyclazocine, dynorphin (1-13) and leucine enkephalin produced partial inhibition, their apparent intrinsic activities (alpha) being 0.57, 0.75 and 0.66, respectively. Morphine and normorphine, which are agonists at mu-receptors, did not inhibit the response of the artery. Naloxone antagonized the actions of opioids and ethylketocyclazocine, and was more effective against methionine enkephalin, leucine enkephalin and [D-Ala2, D-Leu5] enkephalin than against alpha-neoendorphin, ethylketocyclazocine and dynorphin (1-13). The pA2 values of naloxone against so-called delta-agonists were approx. 8.5, and against so-called kappa-agonists were approx. 7.7. The supposed kappa-antagonist, Mr2266, was more effective than naloxone in antagonizing the actions of alpha-neoendorphin, and the kappa-agonists dynorphin (1-13) and ethylketocyclazocine. The pA2 values of Mr2266 against kappa-agonists were 8.5-9.0, and against delta-agonists were 7.8 or less. The opioid peptides and opioids tested did not cause dilatation of the artery previously contracted with histamine. These results suggest that the opioid peptides and ethylketocyclazocine acted on opioid receptors at adrenergic nerve terminals in the ear artery. The opioid receptors appear to be of the delta- and kappa-types, not the mu-type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1916744 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.1985.tb08929.x | DOI Listing |
J Am Chem Soc
May 2017
Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748 Garching, Germany.
Host-microbe communication via small molecule signals is important for both symbiotic and pathogenic relationships, but is often poorly understood at the molecular level. Under conditions of host stress, levels of the human opioid peptide dynorphin are elevated, triggering virulence in the opportunistic pathogenic bacterium Pseudomonas aeruginosa via an unknown pathway. Here we apply a multilayered chemical biology strategy to unravel the mode of action of this putative interkingdom signal.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2016
Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China. Electronic address:
Together with its endogenous ligands (dynorphin), the kappa opioid receptor (KOR) plays an important role in modulating various physiological and pharmacological responses, with a classical G protein-coupled pathway mediating analgesia and non-G protein-dependent pathway, especially the β-arrestin-dependent pathway, eliciting side effects of dysphoria, aversion, drug-seeking in addicts, or even relapse to addiction. Although mounting evidence has verified a functional overlap between dynorphin/KOR and neurotensin/neurotensin receptor 1 (NTSR1) systems, little is known about direct interaction between the two receptors. Here, we showed that KOR and NTSR1 form a heterodimer that functions as a novel pharmacological entity, and this heterodimer, in turn, brings about a switch in KOR-mediated signal transduction, from G protein-dependent to β-arrestin-2-dependent.
View Article and Find Full Text PDFNeuropeptides
June 2016
Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada. Electronic address:
Dynorphins are important neuropeptides with a central role in nociception and pain alleviation. Many mechanisms regulate endogenous dynorphin concentrations, including proteolysis. Proprotein convertases (PCs) are widely expressed in the central nervous system and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; Institute of Pharmacology and Structural Biology, CNRS and Université de Toulouse-Paul Sabatier, 31077 Toulouse, France;
The structure of the dynorphin (1-13) peptide (dynorphin) bound to the human kappa opioid receptor (KOR) has been determined by liquid-state NMR spectroscopy. (1)H and (15)N chemical shift variations indicated that free and bound peptide is in fast exchange in solutions containing 1 mM dynorphin and 0.01 mM KOR.
View Article and Find Full Text PDFToxicol Sci
December 2014
*Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil and Special Laboratory of Applied Toxinology, Center of Toxins, Immune-response and Cell Signaling-CeTICS, Instituto Butantan, Brazil
Accidents caused by scorpions represent a relevant public health issue in Brazil, being more recurring than incidents with snakes and spiders. The main species responsible for this situation is the yellow scorpion, Tityus serrulatus, due especially to the great frequency with which accidents occur and the potential of its venom to induce severe clinical manifestations, even death, mainly among children. Although neurotoxins are well characterized, little information is known about other components of scorpion venoms, such as peptidases, and their effect on envenomation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!