Exhaustion of stem cells is a hallmark of aging. In the testis, dedifferentiated germline stem cells (GSCs) derived from spermatogonia increase during lifespan, leading to the model that dedifferentiation counteracts the decline of GSCs in aged males. To test this, we blocked dedifferentiation by mis-expressing the differentiation factor () in spermatogonia while lineage-labeling these cells. Strikingly, blocking -lineage dedifferentiation under normal conditions in virgin males has no impact on the GSC pool. However, in mated males or challenging conditions, inhibiting -lineage dedifferentiation markedly reduces the number of GSCs and their ability to proliferate and differentiate. We find that -lineage derived GSCs have significantly higher proliferation rates than sibling GSCs in the same testis. We determined that Jun N-terminal kinase (JNK) activity is autonomously required for -lineage dedifferentiation. Overall, we show that dedifferentiation provides a mechanism to maintain the germline and ensure fertility under chronically stressful conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070334PMC
http://dx.doi.org/10.7554/eLife.36095DOI Listing

Publication Analysis

Top Keywords

-lineage dedifferentiation
12
maintain germline
8
germline stem
8
stem cells
8
dedifferentiation
7
gscs
5
jnk signaling
4
signaling triggers
4
triggers spermatogonial
4
spermatogonial dedifferentiation
4

Similar Publications

The Diagnostic Utility of PRAME in Primary Cutaneous Dedifferentiated and Transdifferentiated Melanomas.

J Cutan Pathol

January 2025

Department of Anatomical Pathology, Dorevitch Pathology, Heidelberg, Victoria, Australia.

Melanomas show a wide spectrum of clinical, morphological, immunohistochemical, and molecular features, which can impact treatment and prognosis. Dedifferentiated and transdifferentiated melanomas (DTM) are defined as melanomas which have lost conventional melanocytic morphologic and immunohistochemical features, showing sarcomatous morphology and/or immunohistochemical staining of other cell lineages, and as such, can be mistaken for other entities such as collision tumors and undifferentiated spindle cell tumors. In this series, we highlight the utility of preferentially expressed antigen in melanomas (PRAME) in diagnosing undifferentiated/dedifferentiated melanomas.

View Article and Find Full Text PDF

Obesity is concurrent with immunological dysregulation, resulting in chronic low-grade inflammation and cellular dysfunction. In pancreatic islets, this loss of function has been correlated with mature β-cells dedifferentiating into a precursor-like state through constant exposure to inflammatory stressors. As mature adipocytes likewise have the capability to dedifferentiate in vitro and in vivo, we wanted to analyze this cellular change in relation to adipose tissue (AT) inflammation and adipose tissue macrophage (ATM) activity.

View Article and Find Full Text PDF

Partial Cell Fate Transitions to Promote Cardiac Regeneration.

Cells

December 2024

Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures.

View Article and Find Full Text PDF

Recent progress of principal techniques used in the study of Müller glia reprogramming in mice.

Cell Regen

December 2024

Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.

In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals.

View Article and Find Full Text PDF

TBP bookmarks and preserves neural stem cell fate memory by orchestrating local chromatin architecture.

Mol Cell

January 2025

Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. Electronic address:

Mitotic bookmarking has been posited as an important strategy for cells to faithfully propagate their fate memory through cell generations. However, the physiological significance and regulatory mechanisms of mitotic bookmarking in neural development remain unexplored. Here, we identified TATA-binding protein (TBP) as a crucial mitotic bookmarker for preserving the fate memory of Drosophila neural stem cells (NSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!