A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature. | LitMetric

Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature. Moreover, it changed the appearance from white light to yellow/orange, rendering it unusable for many practical applications. Here, we show that selectively tuning a polychromatic white light spectrum, compensating for the reduction in spectral power between 450 and 500 nm by enhancing power at even shorter wavelengths, can produce greatly different effects on melatonin production, without changes in illuminance or color temperature. On different evenings, 15 participants were exposed to 3 h of white light with either low or high power between 450 and 500 nm, and the effects on salivary melatonin levels and alertness were compared with those during a dim light baseline. Exposure to the spectrum with low power between 450 and 500 nm, but high power at even shorter wavelengths, did not suppress melatonin compared with dim light, despite a large difference in illuminance (175 vs. <5 lux). In contrast, exposure to the spectrum with high power between 450 and 500 nm (also 175 lux) resulted in almost 50% melatonin suppression. For alertness, no significant differences between the 3 conditions were observed. These results open up new opportunities for lighting applications that allow for the use of electrical lighting without disturbance of melatonin production.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0748730418784041DOI Listing

Publication Analysis

Top Keywords

white light
20
melatonin suppression
12
color temperature
12
short wavelengths
12
power 450
12
450 500
12
light
9
filtering short
8
power shorter
8
shorter wavelengths
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!