Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Permafrost thawing may release nitrous oxide (NO) due to large N storage in cold environments. However, NO emissions from permafrost regions have received little attention to date, particularly with respect to the underlying microbial mechanisms. We examined the magnitude of NO fluxes following upland thermokarst formation along a 20-year thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow. We also determined the importance of environmental factors and the related microbial functional gene abundance. Our results showed that permafrost thawing led to a mass release of NO in recently collapsed sites (3 years ago), particularly in exposed soil patches, which presented post-thaw emission rates equivalent to those from agricultural and tropical soils. In addition to abiotic factors, soil microorganisms exerted significant effects on the variability in the NO emissions along the thaw sequence and between vegetated and exposed patches. Overall, our results demonstrate that upland thermokarst formation can lead to enhanced NO emissions, and that the global warming potential (GWP) of NO at the thermokarst sites can reach 60% of the GWP of CH (vs ∼6% in control sites), highlighting the potentially strong noncarbon (C) feedback to climate warming in permafrost regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b02271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!