Flexible organic optoelectronic devices simultaneously targeting mechanical conformability and fast responsivity in the near-infrared (IR) region are a prerequisite to expand the capabilities of practical optical science and engineering for on-skin optoelectronic applications. Here, an ultraflexible near-IR responsive skin-conformal photoplethysmogram sensor based on a bulk heterojunction photovoltaic active layer containing regioregular polyindacenodithiophene-pyridyl[2,1,3]thiadiazole-cyclopentadithiophene (PIPCP) is reported. The ultrathin (3 µm thick) photodetector exhibits unprecedented operational stability under severe mechanical deformation at a bending radius of less than 3 µm, even after more than 10 bending cycles. Deliberate optimization of the physical dimensions of the active layer used in the device enables precise on/off switching and high device yield simultaneously. The response frequency over 1 kHz under mechanically deformed conditions facilitates conformal electronic sensors at the machine/human interface. Finally, a mechanically stretchable, flexible, and skin-conformal photoplethysmogram (PPG) device with higher sensitivity than those of rigid devices is demonstrated, through conformal adherence to the flexuous surface of a fingerprint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201802359 | DOI Listing |
Biosens Bioelectron
March 2020
George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, 30322, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA. Electronic address:
Recent advances in biosensors, bioelectronics, and system integration allow the development of wristband-type devices for health and performance monitoring of athletes. Although these devices provide adequate sensing outputs, they suffer from signal loss due to improper contact of a rigid sensor with the skin. In addition, when a rubber band tightly secures the sensor to the skin, the gap between sensor and skin causes inevitable motion artifacts, resulting in corrupted data.
View Article and Find Full Text PDFAdv Mater
July 2018
Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Flexible organic optoelectronic devices simultaneously targeting mechanical conformability and fast responsivity in the near-infrared (IR) region are a prerequisite to expand the capabilities of practical optical science and engineering for on-skin optoelectronic applications. Here, an ultraflexible near-IR responsive skin-conformal photoplethysmogram sensor based on a bulk heterojunction photovoltaic active layer containing regioregular polyindacenodithiophene-pyridyl[2,1,3]thiadiazole-cyclopentadithiophene (PIPCP) is reported. The ultrathin (3 µm thick) photodetector exhibits unprecedented operational stability under severe mechanical deformation at a bending radius of less than 3 µm, even after more than 10 bending cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!