Aging is characterized by functional decline in homeostatic regulation and vital cellular events. This process can be linked with the development of cardiovascular diseases (CVDs). In this review, we discussed aging-induced biological alterations that are associated with CVDs through the following aspects: (i) structural, biochemical, and functional modifications; (ii) autonomic nervous system (ANS) dysregulation; (iii) epigenetic alterations; and (iv) atherosclerosis and stroke development. Aging-mediated structural and biochemical modifications coupled with gradual loss of ANS regulation, vascular stiffening, and deposition of collagen and calcium often disrupt cardiovascular system homeostasis. The structural and biochemical adjustments have been consistently implicated in the progressive increase in mechanical burden and functional breakdown of the heart and vessels. In addition, cardiomyocyte loss in this process often reduces adaptive capacity and cardiovascular function. The accumulation of epigenetic changes also plays important roles in the development of CVDs. In summary, the understanding of the aging-mediated changes remains promising towards effective diagnosis, discovery of new drug targets, and development of new therapies for the treatment of CVDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015721 | PMC |
http://dx.doi.org/10.1155/2018/7156435 | DOI Listing |
mBio
January 2025
Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan.
The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Maharaja Ranjit Singh Punjab Technical University Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology Bathinda India.
Aim: The aim of the current study was to explore nano-formulation for effective neuroprotection by auranofin.
Background: Currently, the treatment options for various CNS disorders, particularly neurodegenerative disorders, are greatly constrained. A significant obstacle in this pursuit is the blood-brain barrier, a shielding covering that hinders the route of numerous biochemical treatments into the brain.
J Magn Reson Imaging
January 2025
Developing Brain Institute, Children's National Hospital, Washington, D.C., USA.
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to H-MRS in the fetal-neonatal brain and 2) the role of H-MRS in early fetal-neonatal development brain research.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis.
View Article and Find Full Text PDFBMC Urol
January 2025
Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Background: Intraductal carcinoma of the prostate cancer (IDC-P), as a specific pathological type in prostate cancer which usually implies a poor prognosis. IDC-P morphology can be divided into two subtypes: Pattern 1, sieve like or loose cribriform structures; Pattern 2, solid or dense cribriform structures. The purpose of the study is to identify the impact of IDC-P and its subtypes on the prognosis of patients undergoing post-operative radiotherapy (PORT) after radical prostatectomy (RP) due to localized prostate cancer(PCa).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!