A pixel-by-pixel tissue classification framework using multiple contrasts obtained by Jones matrix optical coherence tomography (JM-OCT) is demonstrated. The JM-OCT is an extension of OCT that provides OCT, OCT angiography, birefringence tomography, degree-of-polarization uniformity tomography, and attenuation coefficient tomography, simultaneously. The classification framework consists of feature engineering, -means clustering that generates a training dataset, training of a tissue classifier using the generated training dataset, and tissue classification by the trained classifier. The feature engineering process generates synthetic features from the primary optical contrasts obtained by JM-OCT. The tissue classification is performed in the feature space of the engineered features. We applied this framework to the analysis of optic nerve heads of posterior eyes. This classified each JM-OCT pixel into prelamina, lamina cribrosa (lamina beam), and retrolamina tissues. The lamina beam segmentation results were further utilized for birefringence and attenuation coefficient analysis of lamina beam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033556PMC
http://dx.doi.org/10.1364/BOE.9.003220DOI Listing

Publication Analysis

Top Keywords

training dataset
12
tissue classification
12
lamina beam
12
optic nerve
8
jones matrix
8
matrix optical
8
optical coherence
8
coherence tomography
8
classification framework
8
oct oct
8

Similar Publications

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Assessment of using transfer learning with different classifiers in hypodontia diagnosis.

BMC Oral Health

January 2025

Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.

Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.

View Article and Find Full Text PDF

Belt conveyor idler fault detection algorithm based on improved YOLOv5.

Sci Rep

January 2025

School of Intelligent Manufacturing and Modern Industry (School of Mechanical Engineering), Xinjiang University, Ürümqi, 830017, China.

The rapid expansion of the coal mining industry has introduced significant safety risks, particularly within the harsh environments of open-pit coal mines. The safe and stable operation of belt conveyor idlers is crucial not only for ensuring efficient coal production but also for safeguarding the lives of coal mine workers. Therefore, this paper proposes a method based on deep learning for real-time detection of conveyor idler faults.

View Article and Find Full Text PDF

Deep-Learning-based Automated Identification of Ventriculoperitoneal-Shunt Valve Models from Skull X-rays.

Clin Neuroradiol

January 2025

Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.

Introduction: Ventriculoperitoneal shunts (VPS) are an essential part of the treatment of hydrocephalus, with numerous valve models available with different ways of indicating pressure levels. The model types often need to be identified on X‑rays to assess pressure levels using a matching template. Artificial intelligence (AI), in particular deep learning, is ideally suited to automate repetitive tasks such as identifying different VPS valve models.

View Article and Find Full Text PDF

Improved YOLOv8n based helmet wearing inspection method.

Sci Rep

January 2025

School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, 116028, China.

This paper proposes the YOLOv8n_H method to address issues regarding parameter redundancy, slow inference speed, and suboptimal detection precision in contemporary helmet-wearing target recognition algorithms. The YOLOv8 C2f module is enhanced with a new SC_Bottleneck structure, incorporating the SCConv module, now termed SC_C2f, to mitigate model complexity and computational costs. Additionally, the original Detect structure is substituted with the PC-Head decoupling head, leading to a significant reduction in parameter count and an enhancement in model efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!