Thalassemias are widely occurring genetic hemoglobin disorders; patients with severe thalassemia often require regular blood transfusions for survival. Prenatal detection of thalassemia is currently invasive and carries the risk of miscarriage and infection. A polymerase chain reaction (PCR)-based surface enhanced Raman spectroscopy (SERS) technique was investigated in this paper for the purpose of detecting prenatal α-thalassemia Southeast Asian (SEA) type deletion using maternal plasma. Couples with the same SEA thalassemia (-SEA/αα) were selected, and the quantification of SEA and wild type (WT) alleles in the maternal plasma sample predicted the fetal genotype. PCR was performed using two pairs of fluorescence tag-labeled primers to produce tag-labeled PCR products for both the SEA (labeled with R6G) and WT (labeled with Cy3) alleles. Then, the labeled PCR products containing the two fluorescence tags were measured by SERS. The ratios between the R6G and Cy3 tags were obtained using multiple linear regressions (MLR), and these ratios corresponded with the physical ratio of WT and SEA concentrations in maternal plasma. After verifying this technique on DNA mixtures with known SEA and WT ratios, the plasma from 24 pregnant women was screened. An accuracy of 91.7% was achieved for detecting the fetal genotypes of Hb Bart's, alpha-trait, and normal trait. The results indicated that the simple PCR-SERS method may be sensitive enough for use on cell free fetal DNA (cffDNA) in maternal plasma for non-invasive prenatal detection (NIPD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033558PMC
http://dx.doi.org/10.1364/BOE.9.003167DOI Listing

Publication Analysis

Top Keywords

maternal plasma
20
prenatal detection
12
detection thalassemia
8
fetal dna
8
dna cffdna
8
cffdna maternal
8
surface enhanced
8
enhanced raman
8
raman spectroscopy
8
pcr products
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!