Simultaneous arteriole and venule segmentation with domain-specific loss function on a new public database.

Biomed Opt Express

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Published: July 2018

The segmentation and classification of retinal arterioles and venules play an important role in the diagnosis of various eye diseases and systemic diseases. The major challenges include complicated vessel structure, inhomogeneous illumination, and large background variation across subjects. In this study, we employ a fully convolutional network to simultaneously segment arterioles and venules directly from the retinal image, rather than using a vessel segmentation-arteriovenous classification strategy as reported in most literature. To simultaneously segment retinal arterioles and venules, we configured the fully convolutional network to allow true color image as input and multiple labels as output. A domain-specific loss function was designed to improve the overall performance. The proposed method was assessed extensively on public data sets and compared with the state-of-the-art methods in literature. The sensitivity and specificity of overall vessel segmentation on DRIVE is 0.944 and 0.955 with a misclassification rate of 10.3% and 9.6% for arteriole and venule, respectively. The proposed method outperformed the state-of-the-art methods and avoided possible error-propagation as in the segmentation-classification strategy. The proposed method was further validated on a new database consisting of retinal images of different qualities and diseases. The proposed method holds great potential for the diagnostics and screening of various eye diseases and systemic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033563PMC
http://dx.doi.org/10.1364/BOE.9.003153DOI Listing

Publication Analysis

Top Keywords

proposed method
16
arterioles venules
12
arteriole venule
8
domain-specific loss
8
loss function
8
retinal arterioles
8
eye diseases
8
diseases systemic
8
systemic diseases
8
fully convolutional
8

Similar Publications

Background: The global aging population and rapid development of digital technology have made health management among older adults an urgent public health issue. The complexity of online health information often leads to psychological challenges, such as cyberchondria, exacerbating health information avoidance behaviors. These behaviors hinder effective health management; yet, little research examines their mechanisms or intervention strategies.

View Article and Find Full Text PDF

Background: In data-sparse areas such as health care, computer scientists aim to leverage as much available information as possible to increase the accuracy of their machine learning models' outputs. As a standard, categorical data, such as patients' gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and text-based medical information. However, the effects of including categorical data features for model training in such data-scarce areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population.

View Article and Find Full Text PDF

Background: Digital nerve injuries significantly affect hand function and quality of life, necessitating effective reconstruction strategies. Autologous nerve grafting remains the gold standard due to its superior biocompatibility, despite recent advancements in nerve conduits and allogenic grafts. This study aims to propose a novel zone-based strategy for donor nerve selection to improve outcomes in digital nerve reconstruction.

View Article and Find Full Text PDF

Multidimensional scaling improves distance-based clustering for microbiome data.

Bioinformatics

January 2025

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53726, United States.

Motivation: Clustering patients into subgroups based on their microbial compositions can greatly enhance our understanding of the role of microbes in human health and disease etiology. Distance-based clustering methods, such as partitioning around medoids (PAM), are popular due to their computational efficiency and absence of distributional assumptions. However, the performance of these methods can be suboptimal when true cluster memberships are driven by differences in the abundance of only a few microbes, a situation known as the sparse signal scenario.

View Article and Find Full Text PDF

Optimal router node placement (RNP) is an effective method for improving the performance of wireless mesh networks (WMN). However, solving the RNP problem in WMN is difficult because it is NP-hard. As a result, this problem can only be solved using approximate optimization algorithms such as heuristics and meta-heuristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!