A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The use of controls in interrupted time series studies of public health interventions. | LitMetric

Interrupted time series analysis differs from most other intervention study designs in that it involves a before-after comparison within a single population, rather than a comparison with a control group. This has the advantage that selection bias and confounding due to between-group differences are limited. However, the basic interrupted time series design cannot exclude confounding due to co-interventions or other events occurring around the time of the intervention. One approach to minimizse potential confounding from such simultaneous events is to add a control series so that there is both a before-after comparison and an intervention-control group comparison. A range of different types of controls can be used with interrupted time series designs, each of which has associated strengths and limitations. Researchers undertaking controlled interrupted time series studies should carefully consider a priori what confounding events may exist and whether different controls can exclude these or if they could introduce new sources of bias to the study. A prudent approach to the design, analysis and interpretation of controlled interrupted time series studies is required to ensure that valid information on the effectiveness of health interventions can be ascertained.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyy135DOI Listing

Publication Analysis

Top Keywords

interrupted time
24
time series
24
series studies
12
controls interrupted
8
health interventions
8
before-after comparison
8
controlled interrupted
8
time
7
series
7
interrupted
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!