pH level has a strong impact on population dynamics of the yeast Yarrowia lipolytica and oil micro-droplets in multiphasic bioreactor.

FEMS Microbiol Lett

TERRA Research and Teaching Center, Microbial Processes and Interactions (MiPI), University of Liège, Gembloux Agro-Bio Tech, Avenue de la Faculté d'agronomie, 2B, 5030 Gembloux, Belgium.

Published: August 2018

The oleaginous yeast Yarrowia lipolytica has the ability to use oils and fats as carbon source, making it a promising cell factory for the design of alternative bioprocesses based on renewable substrates. However, such a multiphasic bioreactor design is rather complex and leads to several constraints when considering emulsification of the oil-in-water mixture, foaming and cell growth/physiology on hydrophobic substrate. This study aims to shed light on the effect of pH changes on the physico-chemical properties of the cultivation medium and on cell physiology. It was indeed observed that at a pH value of 6, cell growth rate and intracellular lipid accumulation were optimized. Additionally, foaming was significantly reduced. In order to avoid over foaming in bioreactor, without impairing cell physiology, the use of alternative processes that can only act on the physical structure of culture medium, seems to be an effective alternative to usual chemical anti-foam agents.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fny173DOI Listing

Publication Analysis

Top Keywords

yeast yarrowia
8
yarrowia lipolytica
8
multiphasic bioreactor
8
cell physiology
8
cell
5
level strong
4
strong impact
4
impact population
4
population dynamics
4
dynamics yeast
4

Similar Publications

Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin.

Biotechnol Biofuels Bioprod

January 2025

Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.

Background: Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin.

View Article and Find Full Text PDF

Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.

Appl Biochem Biotechnol

January 2025

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.

To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT).

View Article and Find Full Text PDF

This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates genomic changes in a key yeast used in biotechnology under spontaneous and induced mutagenic conditions.
  • Findings highlight a mutation rate of about 4 × 10 events per base pair per cell division, with specific patterns like C-to-T transitions as the most common spontaneous mutations.
  • Exposure to mutagens like UV light and Zeocin significantly increases mutation rates, with Zeocin leading to unique substitution patterns and a higher frequency of insertions and deletions.
View Article and Find Full Text PDF

Advancing Succinic Acid Biomanufacturing Using the Nonconventional Yeast .

J Agric Food Chem

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.

Succinic acid is an essential bulk chemical with wide-ranging applications in materials, food, and pharmaceuticals. With the advancement of biotechnology, there has been a surge in focus on low-carbon sustainable microbial synthesis methods for producing biobased succinic acid. Due to its high intrinsic acid tolerance, has gained recognition as a competitive chassis for the industrial manufacture of succinic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!