The Pirarucu (Arapaima gigas) is one of the world's largest freshwater fishes and member of the superorder Osteoglossomorpha (bonytongues), one of the oldest lineages of ray-finned fishes. This species is an obligate air-breather found in the basin of the Amazon River with an attractive potential for aquaculture. Its phylogenetic position among bony fishes makes the Pirarucu a relevant subject for evolutionary studies of early teleost diversification. Here, we present, for the first time, a draft genome version of the A. gigas genome, providing useful information for further functional and evolutionary studies. The A. gigas genome was assembled with 103-Gb raw reads sequenced in an Illumina platform. The final draft genome assembly was ∼661 Mb, with a contig N50 equal to 51.23 kb and scaffold N50 of 668 kb. Repeat sequences accounted for 21.69% of the whole genome, and a total of 24,655 protein-coding genes were predicted from the genome assembly, with an average of nine exons per gene. Phylogenomic analysis based on 24 fish species supported the postulation that Osteoglossomorpha and Elopomorpha (eels, tarpons, and bonefishes) are sister groups, both forming a sister lineage with respect to Clupeocephala (remaining teleosts). Divergence time estimations suggested that Osteoglossomorpha and Elopomorpha lineages emerged independently in a period of ∼30 Myr in the Jurassic. The draft genome of A. gigas provides a valuable genetic resource for further investigations of evolutionary studies and may also offer a valuable data for economic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143160 | PMC |
http://dx.doi.org/10.1093/gbe/evy130 | DOI Listing |
Environ Microbiol
January 2025
Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
s.s. belongs to the Cercidoideae subfamily, located at the base of the Leguminosae family.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!