A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis. | LitMetric

A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis.

Biosens Bioelectron

School of Chemistry, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney 2052, Australia. Electronic address:

Published: October 2018

The integration of plasmonic nanoparticles into biosensors has the potential to increase the sensitivity and dynamic range of detection, through the use of single nanoparticle assays. The analysis of the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles has allowed the limit of detection of biosensors to move towards single molecules. However, due to complex equipment or slow analysis times, these technologies have not been implemented for point-of-care detection. Herein, we demonstrate an advancement in LSPR analysis by presenting a technique, which utilizes an inexpensive CMOS-equipped digital camera and a dark-field microscope, that can analyse the λ of over several thousand gold nanospheres in less than a second, without the use of a spectrometer. This improves the throughput of single particle spectral analysis by enabling more nanoparticles to be probed and in a much shorter time. This technique has been demonstrated through the detection of interleukin-6 through a core-satellite binding assay. We anticipate that this technique will aid in the development of high-throughput, multiplexed and point-of-care single nanoparticle biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.06.066DOI Listing

Publication Analysis

Top Keywords

plasmonic nanoparticles
12
single nanoparticle
8
single
5
analysis
5
rapid readout
4
readout single
4
single plasmonic
4
nanoparticles
4
nanoparticles dark-field
4
dark-field microscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!