Slow pyrolysis of bamboo is an important conversion pathway to produce biofuels and chemicals such as biomass-derived fertilizer precursor (biochar). In this study, evolved gas analysis during pyrolysis of bamboo was conducted by a combination of TG, FTIR and GC-MS to establish a detailed pyrolysis mechanism of bamboo biomass. The main decomposition temperature zones were 300-400 °C and it reached the maximum mass loss intensity at 350 °C based on DTG curves. The main functional groups escaped from biomass during pyrolysis were -OH, -CH, -CH, CO, C-O, and -COOH. The main compounds during pyrolysis of bamboo were acetic acid and 2-propenoic acid, ethenyl ester at 300 °C, 2-oxo-propanoic acid and 1-hydroxy-2-propanone at 350 °C and acetic acid and acetic acid ethenyl ester at 400 °C. Evolved gas analysis indicated that components in bamboo occurred in different temperatures and pyrolysis mechanisms and resulted in distinguishing pyrolysis product emission characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.07.005DOI Listing

Publication Analysis

Top Keywords

evolved gas
12
gas analysis
12
pyrolysis bamboo
12
acetic acid
12
pyrolysis
8
slow pyrolysis
8
pyrolysis mechanism
8
mechanism bamboo
8
acid ethenyl
8
ethenyl ester
8

Similar Publications

A shallow-water oxygen minimum zone in an oligotrophic Tonian basin.

Nat Commun

January 2025

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China.

The Tonian Period (1000-720 Ma) bore witness to the transition from a prokaryote-dominated marine ecosystem to one characterized by the proliferation of eukaryotes. This fundamental shift has generally been attributed to evolving marine redox states. Here, we present sedimentological and geochemical analyses of the early Tonian Huainan, Feishui, and Huaibei groups in the Xuhuai basin of the North China craton.

View Article and Find Full Text PDF

Clinical trials of drugs, procedures, and other therapies play a crucial role in advancing medical science by evaluating the safety, efficacy, and optimal use of medical interventions. The design and implementation of these trials have evolved significantly over time, reflecting advancements in medicine, ethics, and methodology. Early historical examples, such as King Nebuchadnezzar II's and his captives' dietary experiment and Ambroise Paré's treatment of gunshot wounds, laid some foundational principles of trial design.

View Article and Find Full Text PDF

Introduction: Many interventional strategies are commonly used to treat chronic low back pain (CLBP), though few are specifically intended to target the distinct underlying pathomechanisms causing low back pain. Restorative neurostimulation has been suggested as a specific treatment for mechanical CLBP resulting from multifidus dysfunction. In this randomized controlled trial, we report outcomes from a cohort of patients with CLBP associated with multifidus dysfunction treated with restorative neurostimulation compared to those randomized to a control group receiving optimal medical management (OMM) over 1 year.

View Article and Find Full Text PDF

Enhanced Prediction of CO-Brine Interfacial Tension at Varying Temperature Using a Multibranch-Structure-Based Neural Network Approach.

Langmuir

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.

Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.

View Article and Find Full Text PDF

Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates.

ACS Appl Mater Interfaces

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!