Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A solid carbon-rich product hydrochar, was prepared using hydrothermal carbonisation of food waste at temperatures of 200, 250 and 300 °C. To acquire detailed insight into physicochemical and structural properties, hydrochar samples were characterised using a range of techniques. The carbon content and higher heating value of food waste increased considerably from 39 to 73% and 15 to 31 MJ/kg corresponding to the heating temperature. The blends of hydrochar and coal prepared in three different ratios (5%, 10% and 15%) exhibited different thermal behaviour. The overall results of co-combustion study showed that the activation energy of hydrochar samples decreased from 56.78 KJ/mol to 29.80 KJ/mol with increase in temperature. Hydrochar prepared at 300 °C with coal blending ratio of 10% exhibited the lowest activation energy of 19.45 KJ/mol. Additionally thermal gravimetric analysis of the samples showed that high temperature carbonization can increase the combustion properties of hydrochar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.06.112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!