A novel low cost microalgal harvesting technique with coagulant recovery and recycling.

Bioresour Technol

Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; SDIC Microalgae Biotechnology Center, SDIC Biotech Investment Co., LTD., Beijing 100035, China.

Published: October 2018

In this study, a novel low cost and sustainable microalgal harvesting technique was developed using the concept of coagulant recovery concentration and recycling. Al can be recovered from harvested Scenedesmus acuminatus biomass with 0.1 M HCl, at an acid solution-biomass ratio of 250 ml g. The residual Al content in the purified biomass was reduced to 0.11 ± 0.0006 mg g, while a higher content of 59.74 ± 3.11 mg g was found in the coagulation harvested biomass. The recovered Al solution was concentrated 25 times and then reused for the harvesting of S. acuminatus. The Al recovery and reuse were repeated 5 times, and the harvesting efficiencies were found higher than the fresh Al as a result of the presence of extracellular polymeric substances in the recovered coagulant solution which aided the coagulation process. According to the technical-economic analysis, the cost of chemicals decreased 50% after 5 times recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.06.105DOI Listing

Publication Analysis

Top Keywords

novel low
8
low cost
8
microalgal harvesting
8
harvesting technique
8
coagulant recovery
8
cost microalgal
4
harvesting
4
technique coagulant
4
recovery recycling
4
recycling study
4

Similar Publications

Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.

View Article and Find Full Text PDF

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!