Herein, uniform dendritic PtCo nanoclusters supported on sheet-like polypyrrole (PtCo NCs/PPy) were prepared by a facile one-pot solvothermal method. Cetyltrimethylammonium chloride (CTAC) and pyrrole worked as the capping agent and reductant, respectively, and pyrrole was in-situ polymerized to form PPy sheets under solvothermal conditions. The dendritic PtCo NCs/PPy had the enlarged electrochemically active surface area (EASA, 30.95 mg), and showed the superior catalytic performance and durability towards oxygen reduction reaction (ORR) and ethylene glycol oxidation reaction (EGOR) in comparison with PtCo nanoparticles (NPs), PtCo NPs and commercial Pt/C catalysts. This work displays a new strategy for rational design and synthesis of advanced functional nanocomposites as electrocatalysts in fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2018.06.095 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFUnlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFChem Sci
December 2024
Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Construction and Ecology, Shantou Polytechnic Shantou 515078 Guangdong China
This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.
View Article and Find Full Text PDFHeliyon
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
The shortcomings of precious metal based catalysts have limited the development of novel energies. So, developing low-cost and high performance transition metal based catalysts is one of the most feasible way to substitute the precious metal based catalysts. In all of the developed catalysts for oxygen reduction reactions (ORR), the iron-based nitrogen doped carbon nanotube (N-CNT) show great promise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!