Facile solvothermal fabrication of polypyrrole sheets supported dendritic platinum-cobalt nanoclusters for highly efficient oxygen reduction and ethylene glycol oxidation.

J Colloid Interface Sci

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China. Electronic address:

Published: November 2018

Herein, uniform dendritic PtCo nanoclusters supported on sheet-like polypyrrole (PtCo NCs/PPy) were prepared by a facile one-pot solvothermal method. Cetyltrimethylammonium chloride (CTAC) and pyrrole worked as the capping agent and reductant, respectively, and pyrrole was in-situ polymerized to form PPy sheets under solvothermal conditions. The dendritic PtCo NCs/PPy had the enlarged electrochemically active surface area (EASA, 30.95 mg), and showed the superior catalytic performance and durability towards oxygen reduction reaction (ORR) and ethylene glycol oxidation reaction (EGOR) in comparison with PtCo nanoparticles (NPs), PtCo NPs and commercial Pt/C catalysts. This work displays a new strategy for rational design and synthesis of advanced functional nanocomposites as electrocatalysts in fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.06.095DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
ethylene glycol
8
glycol oxidation
8
dendritic ptco
8
ptco ncs/ppy
8
ptco
5
facile solvothermal
4
solvothermal fabrication
4
fabrication polypyrrole
4
polypyrrole sheets
4

Similar Publications

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes.

Chem Sci

December 2024

Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain

Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.

View Article and Find Full Text PDF

This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.

View Article and Find Full Text PDF

The shortcomings of precious metal based catalysts have limited the development of novel energies. So, developing low-cost and high performance transition metal based catalysts is one of the most feasible way to substitute the precious metal based catalysts. In all of the developed catalysts for oxygen reduction reactions (ORR), the iron-based nitrogen doped carbon nanotube (N-CNT) show great promise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!