Background: Understanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases.
Methods: MC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay.
Results: miR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p.
Conclusion: Our study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2018.07.003 | DOI Listing |
Probiotics Antimicrob Proteins
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:
In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.
Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Fatih, Istanbul, Turkey.
Objectives: Dental bone formation involves various cellular and molecular mechanisms, and phytoestrogens such as formononetin (FORM) are promising because of their estrogenic, anti-inflammatory, and antioxidant effects. This study investigated the effect of FORM on osteoblast proliferation, differentiation, and mineralization in combination with spongiosa granulates (BO) in vitro.
Materials And Methods: Human fetal osteoblast cells (hFOB1.
Discov Med
December 2024
Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
The immune and musculoskeletal systems closely interplay in bone repair and regeneration. After bone injury, the body produces high levels of cytokines and signaling molecules to balance bone formation and resorption. Interleukin (IL)-17A, a cytokine expressed early in the inflammatory process, profoundly influences osteoprogenitor cell fate, thereby contributing to bone homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!