Fabrication and characterisation of starch/chitosan/flax fabric green flame-retardant composites.

Int J Biol Macromol

Department of Mechanical Engineering, Changwon National University, Changwon, Republic of Korea. Electronic address:

Published: November 2018

The study reveals the fabrication of eco-friendly bio-composites by employing natural, widely available biopolymers such as starch, chitosan (CS) and flax fabric (FF). In a typical process, starch was used in the form of thermoplastic starch prepared via mechano ball milling and subsequently, composites were fabricated via compression with CS and FF. The nature of the composites was analysed using FTIR. Good compatibility and homogeneous dispersion of reinforcements was corroborated using FESEM (EDX). The influence of CS (3, 6, & 9 wt%) on the mechanical (UTM) and thermal (TGA) properties, biodegradability (soil burial test), and flammability (horizontal burning test (UL94), limited oxygen index (LOI)) of the composites was investigated. An improvement in tensile strength from 16.45 to 20.78 MPa, thermal stability 10 wt% @ 800 °C (N atmosphere) and flame retardancy showed remarkable withstandability (UL94 = Vo & LOI = 40) of the composites with flame and flame self-annihilate were speculated to arise from the dense char formed by the carbonaceous agent CS. A delay in biodegradation was observed for CS composites, indicating longer durability of the composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.07.006DOI Listing

Publication Analysis

Top Keywords

composites
7
fabrication characterisation
4
characterisation starch/chitosan/flax
4
starch/chitosan/flax fabric
4
fabric green
4
green flame-retardant
4
flame-retardant composites
4
composites study
4
study reveals
4
reveals fabrication
4

Similar Publications

Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!