A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased companion animals in Brazil. | LitMetric

Extended-spectrum beta-lactamase (ESBL)- and plasmid-mediated AmpC (pAmpC)-carrying Enterobacteriaceae have widely disseminated in human, animal and environmental reservoirs. Pets have been recognized as a source of ESBL/pAmpC worldwide, and are possibly also a source of human contamination. The aim of this study was to document to what extent cats and dogs may act as a driving force in the spread of ESBLs and pAmpCs in Brazil. A total of 113 healthy stray cats and dogs and 74 sick pets were sampled, and extended-spectrum cephalosporin-resistant Enterobacteriaceae (ESC-R) were detected in 28/113 (24.8%) and 8/74 (10.8%) tested animals, respectively. Different Enterobacteriaceae isolates (mostly E. coli), a large number of E. coli clones (with ST90, ST457, ST973 and ST2541 being predominant), and several ESBL/pAmpC genes and plasmids were characterized, highlighting the ability of stray and pet cats and dogs to further spread a wide range of ESC-resistance determinants. The ESBL phenotype was due to the bla and bla genes, as found in human epidemiology in Brazil, but bla and bla were also identified. The pAmpC phenotype was systematically due to the presence of the bla gene, mostly carried by IncI1 ST12 plasmids. Our results showed that pets can be considered a significant reservoir of multidrug-resistant bacteria in Brazil. This is especially true for healthy stray dogs that displayed the highest prevalence (24.8%) of ESBLs/pAmpC resistance determinants, which can then be further spread both to the environment and to other animals or humans by contact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2018.05.017DOI Listing

Publication Analysis

Top Keywords

cats dogs
12
healthy stray
8
bla bla
8
bla
5
prevalence molecular
4
molecular features
4
features esbl/pampc-producing
4
enterobacteriaceae
4
esbl/pampc-producing enterobacteriaceae
4
enterobacteriaceae healthy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!