Calculations of free energy of surface interactions in crystalline polyethylene.

J Chem Phys

Polymers Branch, Materials and Manufacturing Science Division, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA.

Published: July 2018

The surface free energy of the crystalline polyethylene (PE) is an important property related with wettability, adhesion, and crystal growth. We investigated the profiles of free energy of surface interactions in the fully thermalized crystalline PE during debonding and shearing with atomistic molecular dynamics simulations using steered molecular dynamics and umbrella sampling techniques. The stress profiles during debonding and shearing processes were also estimated and compared with those obtained from analogous deformation simulations. We estimated the vacuum surface free energies of two different crystallographic surfaces (100) and (010) of the crystalline PE from the free energy changes during the debonding process. The estimated surface free energies were insensitive to the choice of simulation protocols after combining estimates from both forward and backward processes and were in excellent agreement with those obtained from an experiment on PE single crystal aggregates, which underscores the importance of the inclusion of the entropic contribution in the free energy calculated with the fully flexible interface adopted in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5031026DOI Listing

Publication Analysis

Top Keywords

free energy
20
surface free
12
energy surface
8
surface interactions
8
crystalline polyethylene
8
debonding shearing
8
molecular dynamics
8
free energies
8
free
6
energy
5

Similar Publications

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.

View Article and Find Full Text PDF

Electrochemically synthesized HO at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets.

Nat Commun

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.

Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (HO) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating HO at industrial-level current densities (>300 mA cm) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (B-C) with HO production rates of industrial relevance in neutral or alkaline media.

View Article and Find Full Text PDF

Nanoscale polarization transient gratings.

Nat Commun

December 2024

Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149, Trieste, Italy.

Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!