Using gradient- and dispersion-corrected density functional theory in connection with ab initio molecular dynamics and efficient, parametrized Velocity-Velocity Autocorrelation Function (VVAF) methodology, we study the vibrational spectra (Vibrational Sum Frequency, VSF, and infrared, IR) of hydroxylated α-AlO(0001) surfaces with and without additional water. Specifically, by considering a naked hydroxylated surface and the same surface with a particularly stable, "ice-like" hexagonal water later allows us to identify and disentangle main spectroscopic bands of OH bonds, their orientation and dynamics, and the role of water adsorption. In particular, we assign spectroscopic signals around 3700 cm as being dominated by perpendicularly oriented non-hydrogen bonded aluminol groups, with and without additional water. Furthermore, the thin water layer gives spectroscopic signals which are already comparable to previous theoretical and experimental findings for the solid/(bulk) liquid interface, showing that water molecules closest to the surface play a decisive role in the vibrational response of these systems. From a methodological point of view, the effects of temperature, anharmonicity, hydrogen-bonding, and structural dynamics are taken into account and analyzed, allowing us to compare the calculated IR and VSF spectra with the ones based on normal mode analysis and vibrational density of states. The VVAF approach employed in this work appears to be a computationally accurate yet feasible method to address the vibrational fingerprints and dynamical properties of water/metal oxide interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5023347DOI Listing

Publication Analysis

Top Keywords

hydroxylated α-alo0001
8
α-alo0001 surfaces
8
initio molecular
8
molecular dynamics
8
additional water
8
spectroscopic signals
8
water
7
vibrational
6
vibrational spectroscopy
4
spectroscopy hydroxylated
4

Similar Publications

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.

View Article and Find Full Text PDF

Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.

Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.

View Article and Find Full Text PDF

Ligand-based cheminformatics and free energy-inspired molecular simulations for prioritizing and optimizing G-protein coupled receptor kinase-6 (GRK6) inhibitors in multiple myeloma treatment.

Comput Biol Chem

January 2025

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, presenting limited treatment options with no curative potential and significant drug resistance. Recent studies involving genetic knockdown established the crucial role of GRK6 in upholding the viability of MM cells, emphasizing the need to identify potential inhibitors. Computational exploration of GRK6 inhibitors has not been attempted previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!